Artificial intelligence diagnostic system predicts multiple Lugol-voiding lesions in the esophagus and patients at high risk for esophageal squamous cell carcinoma

医学 食管 食管癌 内科学 染色 放射科 癌症 病理
作者
Yohei Ikenoyama,Toshiyuki Yoshio,Junki Tokura,Sakiko Naito,Ken Namikawa,Yoshitaka Tokai,Shoichi Yoshimizu,Yusuke Horiuchi,Akiyoshi Ishiyama,Toshiaki Hirasawa,Tomohiro Tsuchida,Naoyuki Katayama,Tomohiro Tada,Junko Fujisaki
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:53 (11): 1105-1113 被引量:15
标识
DOI:10.1055/a-1334-4053
摘要

It is known that an esophagus with multiple Lugol-voiding lesions (LVLs) after iodine staining is high risk for esophageal cancer; however, it is preferable to identify high-risk cases without staining because iodine causes discomfort and prolongs examination times. This study assessed the capability of an artificial intelligence (AI) system to predict multiple LVLs from images that had not been stained with iodine as well as patients at high risk for esophageal cancer.We constructed the AI system by preparing a training set of 6634 images from white-light and narrow-band imaging in 595 patients before they underwent endoscopic examination with iodine staining. Diagnostic performance was evaluated on an independent validation dataset (667 images from 72 patients) and compared with that of 10 experienced endoscopists.The sensitivity, specificity, and accuracy of the AI system to predict multiple LVLs were 84.4 %, 70.0 %, and 76.4 %, respectively, compared with 46.9 %, 77.5 %, and 63.9 %, respectively, for the endoscopists. The AI system had significantly higher sensitivity than 9/10 experienced endoscopists. We also identified six endoscopic findings that were significantly more frequent in patients with multiple LVLs; however, the AI system had greater sensitivity than these findings for the prediction of multiple LVLs. Moreover, patients with AI-predicted multiple LVLs had significantly more cancers in the esophagus and head and neck than patients without predicted multiple LVLs.The AI system could predict multiple LVLs with high sensitivity from images without iodine staining. The system could enable endoscopists to apply iodine staining more judiciously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
久居深山发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
3秒前
4秒前
糖果苏扬完成签到 ,获得积分10
5秒前
杨琴发布了新的文献求助10
5秒前
ibo发布了新的文献求助10
5秒前
Yimi发布了新的文献求助10
6秒前
jj发布了新的文献求助10
6秒前
苏卿应助yuanhao采纳,获得10
6秒前
七zi发布了新的文献求助10
6秒前
拉长的诗蕊完成签到,获得积分10
8秒前
8秒前
别潜然发布了新的文献求助10
8秒前
123完成签到,获得积分10
9秒前
77完成签到 ,获得积分10
9秒前
今后应助飞翔的企鹅采纳,获得10
10秒前
路十三完成签到,获得积分10
11秒前
12秒前
久居深山完成签到,获得积分10
13秒前
13秒前
七zi完成签到,获得积分20
14秒前
科研通AI5应助xingziyu采纳,获得10
14秒前
干净之槐完成签到,获得积分10
14秒前
organicboy发布了新的文献求助10
15秒前
Jasper应助jj采纳,获得10
16秒前
充电宝应助梁子奥里给采纳,获得10
17秒前
gg发布了新的文献求助10
17秒前
一一一完成签到 ,获得积分10
18秒前
自然1111发布了新的文献求助10
18秒前
zsh发布了新的文献求助10
19秒前
22秒前
ycc完成签到,获得积分10
24秒前
晨晨学长完成签到,获得积分10
24秒前
科研通AI5应助xhxh5946采纳,获得30
25秒前
坟里唱情歌完成签到 ,获得积分10
25秒前
野性的小懒虫完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978