Cross Fusion Net: A Fast Semantic Segmentation Network for Small-Scale Semantic Information Capturing in Aerial Scenes

计算机科学 人工智能 分割 模式识别(心理学) 比例(比率) 深度学习 图像分割 卷积神经网络 计算机视觉 特征提取 目标检测
作者
Chengli Peng,Kaining Zhang,Yong Ma,Jiayi Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2021.3053062
摘要

Capturing accurate multiscale semantic information from the images is of great importance for high-quality semantic segmentation. Over the past years, a large number of methods attempt to improve the multiscale information capturing ability of the networks via various means. However, these methods always suffer unsatisfactory efficiency (e.g., speed or accuracy) on the images that include a large number of small-scale objects, for example, aerial images. In this article, we propose a new network named cross fusion net (CF-Net) for fast and effective extraction of the multiscale semantic information, especially for small-scale semantic information. In particular, the proposed CF-Net can capture more accurate small-scale semantic information from two aspects. On the one hand, we develop a channel attention refinement block to select the informative features. On the other hand, we propose a cross fusion block to enlarge the receptive field of the low-level feature maps. As a result, the network can encode more accurate semantic information from the small-scale objects, and the segmentation accuracy of the small-scale objects is improved accordingly. We have compared the proposed CF-Net with several state-of-the-art semantic segmentation methods on two popular aerial image segmentation data sets. Experimental results reveal that the average F₁ score gain brought by our CF-Net is about 0.43% and the F₁ score gain of the small-scale objects (e.g., cars) is about 2.61%. In addition, our CF-Net has the fastest inference speed, which proves its superiority in the aerial scenes. Our code will be released at: https://github.com/pcl111/CF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助安静凡旋采纳,获得10
刚刚
1秒前
1秒前
刻苦的亦绿关注了科研通微信公众号
2秒前
2秒前
柠檬加冰发布了新的文献求助10
2秒前
研友_VZG7GZ应助陈橙采纳,获得50
2秒前
程琳发布了新的文献求助10
2秒前
大黄完成签到,获得积分10
3秒前
3秒前
七柱香完成签到,获得积分10
3秒前
4秒前
5秒前
迷路凌柏完成签到 ,获得积分10
5秒前
轻松的冥王星完成签到,获得积分10
5秒前
LFY应助uu采纳,获得10
5秒前
箱子完成签到,获得积分10
5秒前
科研通AI5应助稳重书双采纳,获得10
5秒前
5秒前
充电宝应助顺心迎南采纳,获得10
5秒前
不安红豆发布了新的文献求助10
6秒前
6秒前
庞雅阳完成签到,获得积分10
6秒前
6秒前
科研通AI5应助dmj采纳,获得30
7秒前
丘比特应助sjh采纳,获得10
7秒前
大黄发布了新的文献求助10
7秒前
明天发布了新的文献求助30
7秒前
英姑应助喜气洋洋采纳,获得10
8秒前
微笑香薇发布了新的文献求助10
8秒前
傲娇的汽车完成签到,获得积分10
8秒前
csz发布了新的文献求助10
8秒前
8秒前
99ldt发布了新的文献求助10
8秒前
8秒前
靠谱发布了新的文献求助10
9秒前
9秒前
9秒前
小马甲应助tingting采纳,获得10
10秒前
顺利毕业发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246