Early Tsunami Detection With Near‐Fault Ocean‐Bottom Pressure Gauge Records Based on the Comparison With Seismic Data

地震计 地质学 地震学 潮位计 地震记录 海底 断层(地质) 海底管道 加速度 滤波器(信号处理) 流离失所(心理学) 大地测量学 海平面 计算机科学 岩土工程 海洋学 经典力学 物理 计算机视觉 心理学 心理治疗师
作者
Ayumu Mizutani,Kiyoshi Yomogida,Yuichiro Tanioka
出处
期刊:Journal Of Geophysical Research: Oceans [Wiley]
卷期号:125 (9) 被引量:13
标识
DOI:10.1029/2020jc016275
摘要

Offshore real-time ocean bottom networks of seismometers and ocean bottom pressure (OBP) gauges have been recently established such as DONET and S-net around the Japanese islands. One of their purposes is to practice rapid and accurate tsunami forecasting. Near-fault OBP records, however, are always contaminated by nontsunami components such as sea-bottom acceleration change until an earthquake stops its fault or sea-floor motions. This study proposes a new method to separate tsunami and ocean bottom displacement components from coseismic OBP records in a real-time basis. Associated with the Off-Mie earthquake of 2016 April 1, we first compared OBP data with acceleration, velocity, and displacement seismograms recorded by seismometers at common ocean bottom sites in both time and frequency domains. Based on this comparison, we adopted a band-pass filter of 0.05–0.15 Hz to remove ocean-bottom acceleration components from the OBP data. Resulting OBP waveforms agree well with the tsunami components estimated by a 100-s low-pass filter with records of several hundred seconds in length. Our method requires only an early portion of a given OBP record after 30 s of an origin time in order to estimate its tsunami component accurately. Our method enhances early tsunami detections with near-fault OBP data; that is, it will make a tsunami forecasting system faster and more reliable than the previous detection schemes that require data away from source regions or after coseismic motions are over.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红红完成签到,获得积分10
3秒前
瑶一瑶发布了新的文献求助10
3秒前
NexusExplorer应助刘鹏宇采纳,获得10
3秒前
roselau完成签到,获得积分10
3秒前
yudandan@CJLU完成签到,获得积分10
4秒前
4秒前
半山完成签到,获得积分10
8秒前
吹泡泡的红豆完成签到 ,获得积分10
9秒前
研友_89eBO8完成签到 ,获得积分10
9秒前
隐形曼青应助ZeJ采纳,获得10
9秒前
9秒前
隐形曼青应助温暖的钻石采纳,获得10
10秒前
Khr1stINK发布了新的文献求助10
11秒前
123cxj发布了新的文献求助10
12秒前
星辰大海应助红红采纳,获得10
12秒前
sweetbearm应助小周采纳,获得10
13秒前
科研通AI5应助赖道之采纳,获得10
13秒前
14秒前
HonamC完成签到,获得积分10
15秒前
十三十四十五完成签到,获得积分10
16秒前
潇洒的问夏完成签到 ,获得积分10
18秒前
无声瀑布完成签到,获得积分10
18秒前
Bingtao_Lian完成签到 ,获得积分10
19秒前
小布丁完成签到 ,获得积分10
19秒前
竹筏过海应助季生采纳,获得30
20秒前
21秒前
buno应助22采纳,获得10
22秒前
赘婿应助TT采纳,获得10
23秒前
23秒前
23秒前
24秒前
Jenny应助赖道之采纳,获得10
26秒前
依古比古完成签到 ,获得积分10
28秒前
汎影发布了新的文献求助10
28秒前
小二完成签到,获得积分10
28秒前
29秒前
31秒前
顾矜应助长情洙采纳,获得10
31秒前
monere发布了新的文献求助30
31秒前
Xiaoxiao应助汉关采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808