已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Incremental Detection of Remote Sensing Objects With Feature Pyramid and Knowledge Distillation

遗忘 棱锥(几何) 特征(语言学) 计算机科学 目标检测 特征提取 人工智能 重新使用 对象(语法) 机器学习 模式识别(心理学) 渐进式学习 集合(抽象数据类型) 特征学习 数据挖掘 数学 工程类 哲学 几何学 程序设计语言 废物管理 语言学
作者
Jingzhou Chen,Shihao Wang,Ling Chen,Haibin Cai,Yuntao Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:26
标识
DOI:10.1109/tgrs.2020.3042554
摘要

When a detection model that has been well-trained on a set of classes faces new classes, incremental learning is always necessary to adapt the model to detect the new classes. In most scenarios, it is required to preserve the learned knowledge of the old classes during incremental learning rather than reusing the training data from the old classes. Since the objects in remote sensing images often appear in various sizes, arbitrary directions, and dense distribution, it further makes incremental learning-based object detection more difficult. In this article, a new architecture for incremental object detection is proposed based on feature pyramid and knowledge distillation. Especially, by means of a feature pyramid network (FPN), the objects with various scales are detected in the different layers of the feature pyramid. Motivated by Learning without Forgetting (LwF), a new branch is expended in the last layer of FPN, and knowledge distillation is applied to the outputs of the old branch to maintain the old learning capability for the old classes. Multitask learning is adopted to jointly optimize the losses from two branches. Experiments on two widely used remote sensing data sets show our promising performance compared with state-of-the-art incremental object detection methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助好好好采纳,获得10
1秒前
Tianyu完成签到 ,获得积分10
2秒前
Ava应助wang采纳,获得10
3秒前
jinsijia发布了新的文献求助30
4秒前
所所应助Mystic采纳,获得10
6秒前
8秒前
帅气明辉完成签到 ,获得积分10
10秒前
harry发布了新的文献求助10
10秒前
追风完成签到 ,获得积分10
10秒前
Jasper应助坦率的寻双采纳,获得30
11秒前
rljjcsl发布了新的文献求助10
14秒前
17秒前
17秒前
犹豫静竹关注了科研通微信公众号
18秒前
小小鱼完成签到 ,获得积分10
20秒前
Wind应助科研通管家采纳,获得10
21秒前
21秒前
Tanya47应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
打打应助科研通管家采纳,获得10
22秒前
Wind应助科研通管家采纳,获得10
22秒前
Tanya47应助科研通管家采纳,获得10
22秒前
22秒前
Tanya47应助科研通管家采纳,获得10
22秒前
Mystic发布了新的文献求助10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
Tanya47应助科研通管家采纳,获得10
22秒前
Wind应助科研通管家采纳,获得10
22秒前
ss发布了新的文献求助10
23秒前
23秒前
笑点低完成签到 ,获得积分10
23秒前
小二郎应助白茶泡泡球采纳,获得10
24秒前
24秒前
26秒前
哦萨尔发布了新的文献求助30
26秒前
刘卓发布了新的文献求助10
29秒前
29秒前
寒梅恋雪完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747