A machine learning-based strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery

随机森林 水质 遥感 环境科学 光学活性 支持向量机 计算机科学 人工智能 化学 地质学 生态学 生物 有机化学
作者
Hongwei Guo,Jinhui Jeanne Huang‬‬‬‬,Bowen Chen,Xiaolong Guo,Vijay P. Singh
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (5): 1841-1866 被引量:59
标识
DOI:10.1080/01431161.2020.1846222
摘要

Water-quality monitoring for small urban waterbodies by remote sensing gets to be difficult due to the coarse spatial resolution of remote-sensing imagery. The recently launched Sentinel-2 produces imagery with a spatial resolution of 10 × 10 m and a temporal resolution of 5 days. It provides an opportunity to conduct high-frequency water-quality monitoring for small waterbodies. Since illegal discharges are an important issue for urban water management, total phosphorous (TP), total nitrogen (TN), and chemical oxygen demand (COD) were chosen as the target water-quality parameters. TP, TN and COD, however, are non-optically active parameters. There are fairly limited previous studies on retrieving these parameters in comparison with optically active parameters, e.g. Chlorophyll-a etc. Based on the fact that non-optically active parameters may be highly correlated with optically active parameters, this study compared 255 possible Sentinel-2 imagery band compositions to identify the most appropriate ones for TP, TN and COD retrieval. Three machine-learning models, namely Random Forest (RF), Support Vector Regression (SVR) and Neural Networks (NN), were compared to seek the most robust ones for retrieving the above non-optically active parameters. Results showed that the most appropriate band (hereafter termed as ‘Bindex’ for brevity) compositions for TP, TN, and COD retrieval were ‘B3+B4+B5+B6+B7+B8’, ‘B3+B4+B5\breAK+B6+B7+B8’, and ‘B2+B3+B5+B6+B7+B8’ respectively. The coefficient of determination (R2) of TP, TN, and COD estimations by NN, RF and SVR was 0.94, 0.88, and 0.86, respectively. The retrieval performances of these non-optically active parameters were hence significantly improved by the optimized machine-learning models and imagery band selection. The developed models have limitations in applying to other areas, thus band selection and tuning parameters with new data are necessary for different areas. The water-quality mapping obtained from Sentinel-2 imagery provided a full spatial coverage of the water-quality characterization for the entire water surface, and helped identify illegal discharges to urban waterbodies. This study provides a new practical and efficient water-quality monitoring strategy for managing small waterbodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
王三完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助精明平露采纳,获得10
3秒前
cc应助LILICOME采纳,获得10
3秒前
???完成签到,获得积分10
5秒前
5秒前
L_发布了新的文献求助10
6秒前
xzl完成签到 ,获得积分10
6秒前
阝火火完成签到,获得积分10
6秒前
王三发布了新的文献求助10
7秒前
小羊同学完成签到,获得积分10
8秒前
自然小鸭子完成签到,获得积分10
8秒前
8秒前
笨笨芯发布了新的文献求助10
9秒前
大胆班完成签到,获得积分10
11秒前
樱_花qxy发布了新的文献求助10
12秒前
12秒前
大可发布了新的文献求助10
13秒前
14秒前
14秒前
嘿嘿嘿发布了新的文献求助10
15秒前
15秒前
16秒前
故意的睫毛膏完成签到 ,获得积分10
16秒前
18秒前
18秒前
19秒前
Simone完成签到 ,获得积分10
20秒前
如意的汽车完成签到,获得积分10
21秒前
ylq发布了新的文献求助30
21秒前
21秒前
不安青牛应助踏实雪一采纳,获得10
21秒前
22秒前
ypp完成签到,获得积分10
23秒前
调研昵称发布了新的文献求助10
23秒前
24秒前
刘梦瑶发布了新的文献求助10
24秒前
雨一直下完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462236
求助须知:如何正确求助?哪些是违规求助? 3055862
关于积分的说明 9049551
捐赠科研通 2745410
什么是DOI,文献DOI怎么找? 1506290
科研通“疑难数据库(出版商)”最低求助积分说明 696047
邀请新用户注册赠送积分活动 695606