Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (5): 440-449.e1 被引量:22
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的绯完成签到,获得积分10
刚刚
刚刚
寒冷银耳汤完成签到,获得积分20
刚刚
明亮无颜完成签到,获得积分10
刚刚
刚刚
yyyyyyf应助chen采纳,获得10
1秒前
塞特完成签到 ,获得积分10
1秒前
会飞的史迪奇完成签到,获得积分20
1秒前
Druid完成签到,获得积分20
1秒前
2秒前
xiang发布了新的文献求助10
2秒前
2秒前
2秒前
冷暖自知发布了新的文献求助10
2秒前
乐乐应助李白采纳,获得10
3秒前
3秒前
明亮无颜发布了新的文献求助30
3秒前
上官若男应助瘦瘦采纳,获得10
4秒前
EMMACao完成签到,获得积分10
4秒前
老单驳回了李健应助
4秒前
哼小盏完成签到,获得积分10
5秒前
HEMC完成签到,获得积分10
5秒前
5秒前
5秒前
yan123发布了新的文献求助10
5秒前
yang完成签到,获得积分10
5秒前
蒲婉秋发布了新的文献求助10
6秒前
BINGBONG完成签到,获得积分20
6秒前
wcywd发布了新的文献求助10
6秒前
Charles完成签到,获得积分10
7秒前
wade2016发布了新的文献求助10
8秒前
sx发布了新的文献求助10
8秒前
标致的背包完成签到,获得积分10
8秒前
9秒前
缥缈奇迹完成签到,获得积分10
9秒前
Hello应助明亮无颜采纳,获得10
9秒前
快来和姐妹玩完成签到,获得积分10
9秒前
秀丽的初柔完成签到,获得积分10
10秒前
xiang完成签到,获得积分10
10秒前
希望天下0贩的0应助小星采纳,获得10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587