Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (5): 440-449.e1 被引量:36
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fanghongjian发布了新的文献求助10
1秒前
月亮邮递员完成签到,获得积分10
2秒前
阿皓要发nature完成签到 ,获得积分10
2秒前
sunyuan完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
崔崔完成签到,获得积分10
3秒前
Ava应助文静的寒松采纳,获得10
3秒前
5476完成签到,获得积分10
4秒前
土豪的长颈鹿完成签到,获得积分10
4秒前
4秒前
4秒前
冷冷暴力完成签到,获得积分10
4秒前
冷月完成签到,获得积分10
4秒前
LUCKY完成签到 ,获得积分10
5秒前
5秒前
mia完成签到,获得积分20
5秒前
lkk完成签到,获得积分10
6秒前
qiao发布了新的文献求助10
6秒前
霸别完成签到 ,获得积分10
7秒前
Echo完成签到 ,获得积分10
7秒前
7秒前
7秒前
小鱼完成签到,获得积分10
7秒前
阿晨完成签到,获得积分10
7秒前
8秒前
8秒前
Anatee完成签到,获得积分10
8秒前
9秒前
wnz完成签到,获得积分20
9秒前
MOMO100完成签到,获得积分10
9秒前
洪汉完成签到,获得积分10
9秒前
曾祥完成签到,获得积分10
9秒前
科研通AI2S应助nan采纳,获得10
9秒前
终抵星空完成签到,获得积分10
9秒前
爱笑谷兰发布了新的文献求助10
9秒前
小薛发布了新的文献求助10
9秒前
9秒前
十七发布了新的文献求助10
10秒前
小马甲应助花雨落123采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090