Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (5): 440-449.e1 被引量:36
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
chunfneg发布了新的文献求助10
2秒前
wanci发布了新的文献求助10
3秒前
ii完成签到,获得积分10
5秒前
mmyq发布了新的文献求助10
6秒前
6秒前
6秒前
明礼A完成签到,获得积分10
7秒前
7秒前
lavender发布了新的文献求助10
7秒前
bkagyin应助HHZ采纳,获得10
7秒前
8秒前
不倒翁发布了新的文献求助10
9秒前
he完成签到,获得积分10
9秒前
10秒前
dongqing12311完成签到,获得积分10
10秒前
12秒前
he发布了新的文献求助10
12秒前
zoey完成签到,获得积分10
12秒前
虚拟的乐萱完成签到,获得积分10
12秒前
Aether发布了新的文献求助10
13秒前
13秒前
liu完成签到,获得积分10
14秒前
sci2025opt完成签到 ,获得积分10
14秒前
15秒前
GRX1110发布了新的文献求助10
17秒前
卡卡完成签到 ,获得积分10
18秒前
Ada发布了新的文献求助10
19秒前
沉默念瑶发布了新的文献求助10
19秒前
19秒前
小小垚发布了新的文献求助10
19秒前
桑榆2完成签到,获得积分10
19秒前
19秒前
思源应助吴啊采纳,获得10
21秒前
21秒前
21秒前
英姑应助虚拟的乐萱采纳,获得10
22秒前
CodeCraft应助HHZ采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142