Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (5): 440-449.e1 被引量:24
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助zy采纳,获得10
1秒前
2秒前
2秒前
2秒前
vulgar发布了新的文献求助100
2秒前
称心元枫发布了新的文献求助10
3秒前
sujingbo完成签到,获得积分10
3秒前
yan发布了新的文献求助10
4秒前
奥特曼完成签到,获得积分10
5秒前
6秒前
任性芾完成签到,获得积分20
6秒前
克劳德发布了新的文献求助10
6秒前
7秒前
乐乐应助飘逸毒娘采纳,获得10
7秒前
ch发布了新的文献求助10
9秒前
11秒前
jerry完成签到,获得积分10
11秒前
11秒前
YangHuilin完成签到,获得积分20
11秒前
SciGPT应助xiaoxiao采纳,获得10
14秒前
杲杲完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
anyao发布了新的文献求助10
16秒前
vulgar完成签到,获得积分10
17秒前
科研通AI6应助糊涂的万采纳,获得30
17秒前
领导范儿应助haha采纳,获得10
17秒前
荣离枯发布了新的文献求助20
18秒前
19秒前
20秒前
风清扬发布了新的文献求助30
20秒前
21秒前
anyao完成签到,获得积分20
22秒前
烟花应助Vicky采纳,获得10
23秒前
李健的小迷弟应助sujingbo采纳,获得10
23秒前
小金发布了新的文献求助10
23秒前
23秒前
顾矜应助zhuangbaobao采纳,获得10
24秒前
qiaozhen发布了新的文献求助10
24秒前
yan完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420596
求助须知:如何正确求助?哪些是违规求助? 4535580
关于积分的说明 14150721
捐赠科研通 4452523
什么是DOI,文献DOI怎么找? 2442306
邀请新用户注册赠送积分活动 1433744
关于科研通互助平台的介绍 1410956