Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (5): 440-449.e1 被引量:36
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
首席医官完成签到,获得积分10
1秒前
1秒前
寒江雪完成签到,获得积分10
1秒前
2秒前
shelly0621完成签到,获得积分10
2秒前
张平一发布了新的文献求助10
2秒前
S先生完成签到,获得积分10
2秒前
隐形的从阳完成签到 ,获得积分20
4秒前
研友_VZG7GZ应助lijiayi采纳,获得10
4秒前
panzhongjie完成签到,获得积分10
6秒前
6秒前
林也发布了新的文献求助10
6秒前
6秒前
insissst发布了新的文献求助10
6秒前
Tu发布了新的文献求助10
6秒前
小城完成签到,获得积分20
7秒前
7秒前
风清扬应助寄琴采纳,获得30
9秒前
图图发布了新的文献求助10
9秒前
10秒前
10秒前
邹小静完成签到 ,获得积分20
10秒前
小城发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI6应助insissst采纳,获得10
11秒前
11秒前
李健应助一口娴蛋黄采纳,获得10
12秒前
香蕉觅云应助cbtg采纳,获得10
13秒前
上官若男应助无敌小行星采纳,获得10
13秒前
Criminology34应助要减肥鸣凤采纳,获得30
13秒前
echo发布了新的文献求助10
14秒前
小一发布了新的文献求助10
14秒前
NexusExplorer应助缥缈的绿兰采纳,获得10
15秒前
17秒前
赘婿应助高大的二娘采纳,获得10
18秒前
20秒前
insissst完成签到,获得积分10
21秒前
蓝天应助baomingqiu采纳,获得10
21秒前
orixero应助老王很烦恼采纳,获得10
23秒前
专注的溪流完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502