Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:21 (5): 440-449.e1 被引量:24
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
刚刚
科研通AI6应助拉长的煎饼采纳,获得10
刚刚
香蕉觅云应助勿忘采纳,获得10
1秒前
三七发布了新的文献求助10
1秒前
慕青应助lai采纳,获得30
1秒前
香蕉觅云应助0805zz采纳,获得10
2秒前
科研通AI5应助factor采纳,获得10
2秒前
超级幼旋应助小道無上采纳,获得100
3秒前
3秒前
FashionBoy应助沈雨琦采纳,获得10
3秒前
3秒前
3秒前
orixero应助小九采纳,获得10
4秒前
abc123发布了新的文献求助10
4秒前
5秒前
5秒前
jagger发布了新的文献求助10
5秒前
科研通AI6应助迷路小丸子采纳,获得10
5秒前
周星星发布了新的文献求助10
5秒前
6秒前
韩诺发布了新的文献求助10
6秒前
古月完成签到,获得积分10
6秒前
6秒前
susuna发布了新的文献求助30
6秒前
7秒前
7秒前
yu完成签到,获得积分20
7秒前
gxch发布了新的文献求助10
9秒前
9秒前
9秒前
默默的水桃完成签到,获得积分10
9秒前
liiii完成签到,获得积分10
9秒前
橙子完成签到,获得积分10
9秒前
dongyu发布了新的文献求助10
10秒前
ruoyi发布了新的文献求助10
10秒前
小情绪发布了新的文献求助10
10秒前
11秒前
1332881954应助储山山采纳,获得10
12秒前
兔子发布了新的文献求助10
12秒前
abc123完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4955953
求助须知:如何正确求助?哪些是违规求助? 4217791
关于积分的说明 13125379
捐赠科研通 4000261
什么是DOI,文献DOI怎么找? 2189318
邀请新用户注册赠送积分活动 1204381
关于科研通互助平台的介绍 1116309