Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI

医学 列线图 乳腺癌 接收机工作特性 无线电技术 置信区间 肿瘤科 内科学 组织病理学 放射科 癌症 病理
作者
Nina Xu,Jiejie Zhou,Xiaxia He,Shuxin Ye,Haiwei Miao,Huiru Liu,Zhongwei Chen,Youfan Zhao,Zhifang Pan,Meihao Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (5): 440-449.e1 被引量:36
标识
DOI:10.1016/j.clbc.2020.12.008
摘要

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助huihui采纳,获得10
1秒前
科研通AI2S应助苗浩阳采纳,获得10
2秒前
dddddd发布了新的文献求助200
2秒前
她是姑娘发布了新的文献求助10
3秒前
Mic应助时尚万言采纳,获得10
3秒前
无极微光应助齐嘉懿采纳,获得20
5秒前
筱喜发布了新的文献求助10
6秒前
小华完成签到,获得积分10
7秒前
8秒前
搞怪的凡梦完成签到,获得积分10
8秒前
星辰大海应助胥风采纳,获得10
8秒前
wanci应助认真雅阳采纳,获得10
9秒前
9秒前
leclare完成签到,获得积分10
10秒前
思源应助Promise采纳,获得10
10秒前
小宇子完成签到,获得积分10
11秒前
怀念逸完成签到,获得积分10
11秒前
cheng完成签到,获得积分10
12秒前
等待芷容完成签到,获得积分10
13秒前
leclare发布了新的文献求助10
14秒前
甜菜发布了新的文献求助10
15秒前
大面包发布了新的文献求助10
15秒前
科研通AI6应助清脆巧蕊采纳,获得10
15秒前
彭于晏应助风中的奎采纳,获得10
18秒前
19秒前
3927456843发布了新的文献求助20
19秒前
qss完成签到,获得积分10
20秒前
蟑螂恶霸发布了新的文献求助10
20秒前
甜崽完成签到,获得积分10
21秒前
河河关注了科研通微信公众号
21秒前
21秒前
22秒前
二二二发布了新的文献求助10
25秒前
勤奋的听枫完成签到 ,获得积分10
26秒前
科研通AI6应助小薇采纳,获得10
26秒前
甜崽发布了新的文献求助10
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
骜111完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312