Integrating genomic features for non-invasive early lung cancer detection

肺癌 肿瘤科 医学 内科学 体细胞 阶段(地层学) 肺癌筛查 癌症 个性化医疗 生物 生物信息学 基因 遗传学 古生物学
作者
Jacob J. Chabon,Emily G. Hamilton,David M. Kurtz,Mohammad Shahrokh Esfahani,Everett J. Moding,Henning Stehr,Joseph G. Schroers‐Martin,Barzin Y. Nabet,Binbin Chen,Aadel A. Chaudhuri,Chih Long Liu,Angela BY Hui,Michael C. Jin,Tej D. Azad,Diego Almanza,Young-Jun Jeon,Monica Nesselbush,Lyron Co Ting Keh,Rene F. Bonilla,Christopher H. Yoo
出处
期刊:Nature [Nature Portfolio]
卷期号:580 (7802): 245-251 被引量:526
标识
DOI:10.1038/s41586-020-2140-0
摘要

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies. Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊白玉完成签到 ,获得积分10
刚刚
小墨墨完成签到 ,获得积分10
刚刚
3秒前
江蓠完成签到,获得积分10
3秒前
xionghaizi完成签到,获得积分10
3秒前
一氧化二氢完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
奔铂儿钯完成签到,获得积分10
5秒前
看文献搞科研完成签到,获得积分10
5秒前
姚姚完成签到,获得积分10
6秒前
赟yun完成签到,获得积分0
7秒前
典雅的语海完成签到,获得积分10
8秒前
平淡的寄风完成签到,获得积分10
9秒前
339564965完成签到,获得积分10
10秒前
11秒前
ccc完成签到,获得积分10
11秒前
wangbw完成签到,获得积分10
11秒前
只想顺利毕业的科研狗完成签到,获得积分10
13秒前
兜兜揣满糖完成签到 ,获得积分10
13秒前
研友_ZA2B68完成签到,获得积分0
14秒前
xueshidaheng完成签到,获得积分0
14秒前
15秒前
kyhappy_2002完成签到,获得积分10
16秒前
舒心的久完成签到 ,获得积分10
16秒前
von完成签到,获得积分10
16秒前
yy爱科研完成签到,获得积分10
16秒前
17秒前
韭菜盒子完成签到,获得积分20
17秒前
keyan完成签到,获得积分10
17秒前
TianFuAI完成签到,获得积分10
18秒前
斯奈克完成签到,获得积分20
19秒前
风信子完成签到,获得积分10
19秒前
Helios完成签到,获得积分10
20秒前
时尚雨兰完成签到,获得积分10
22秒前
clientprogram应助风趣霆采纳,获得30
22秒前
23秒前
nanostu完成签到,获得积分10
23秒前
吐司炸弹完成签到,获得积分10
23秒前
mayfly完成签到,获得积分10
23秒前
BK_201完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093588
捐赠科研通 3229618
什么是DOI,文献DOI怎么找? 1785661
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470