Integrating genomic features for non-invasive early lung cancer detection

肺癌 肿瘤科 医学 内科学 体细胞 阶段(地层学) 肺癌筛查 癌症 个性化医疗 生物 生物信息学 基因 遗传学 古生物学
作者
Jacob J. Chabon,Emily G. Hamilton,David M. Kurtz,Mohammad Shahrokh Esfahani,Everett J. Moding,Henning Stehr,Joseph G. Schroers‐Martin,Barzin Y. Nabet,Binbin Chen,Aadel A. Chaudhuri,Chih Long Liu,Angela BY Hui,Michael C. Jin,Tej D. Azad,Diego Almanza,Young-Jun Jeon,Monica Nesselbush,Lyron Co Ting Keh,Rene F. Bonilla,Christopher H. Yoo,Ryan B. Ko,Emily Chen,David J. Merriott,Pierre P. Massion,Aaron S. Mansfield,Jin Jen,Hong Ren,Steven H. Lin,Agnes Witkiewicz,Risa Burr,Robert Tibshirani,Sanjiv S. Gambhir,Gerald J. Berry,Kristin C. Jensen,Robert B. West,Joel W. Neal,Heather A. Wakelee,Billy W. Loo,Christian A. Kunder,Ann N. Leung,Natalie S. Lui,Mark F. Berry,Joseph B. Shrager,Viswam S. Nair,Daniel A. Haber,Lecia V. Sequist,Ash A. Alizadeh,Maximilian Diehn
出处
期刊:Nature [Springer Nature]
卷期号:580 (7802): 245-251 被引量:463
标识
DOI:10.1038/s41586-020-2140-0
摘要

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies. Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的飞机完成签到,获得积分20
1秒前
1秒前
2秒前
所所应助小谢采纳,获得10
3秒前
今后应助12等等采纳,获得10
3秒前
3秒前
4秒前
4秒前
化工葫芦娃完成签到,获得积分10
4秒前
接accept完成签到 ,获得积分10
4秒前
天天快乐应助星星气球采纳,获得50
5秒前
6秒前
机灵亦旋发布了新的文献求助20
6秒前
赵李奕安关注了科研通微信公众号
6秒前
玩家发布了新的文献求助10
7秒前
8秒前
求知若渴口好干完成签到 ,获得积分10
8秒前
肥皂完成签到,获得积分10
9秒前
ff发布了新的文献求助30
10秒前
秃头僧发布了新的文献求助10
10秒前
12秒前
闪电侠完成签到,获得积分10
13秒前
桐桐应助艾米采纳,获得10
13秒前
FashionBoy应助玩家采纳,获得10
13秒前
14秒前
15秒前
诸沧海发布了新的文献求助10
15秒前
15秒前
15秒前
chitin chu完成签到,获得积分10
16秒前
星辰大海应助李小伟采纳,获得10
16秒前
脑洞疼应助心灵美的飞机采纳,获得10
17秒前
香蕉觅云应助晶杰采纳,获得10
17秒前
上上签完成签到,获得积分10
18秒前
12等等发布了新的文献求助10
18秒前
19秒前
autobot1发布了新的文献求助10
20秒前
Jay发布了新的文献求助30
20秒前
鱼莉完成签到,获得积分10
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721