How Good Is Tactical Asset Allocation Using Standard Indicators

资产配置 资产(计算机安全) 文件夹 资产管理 业务 经济 另类资产 精算学
作者
Michael Schnetzer
出处
期刊:The Journal of Portfolio Management [Pageant Media US]
卷期号:46 (6): 120-134 被引量:1
标识
DOI:10.3905/jpm.2020.1.145
摘要

Tactical asset allocation decisions are often based on (and justified by) macroeconomic developments and valuation ratios. However, why should using such publicly available information provide an investment edge? This article investigates whether a simple combination approach based on popular indicators can improve a multi-asset portfolio’s performance. The author developed a method to assess each asset class’s attractiveness using standard and economically motivated indicators from four scientifically valid areas (valuation, trend, risk, and macroeconomics). Each indicator was evaluated relative to its own history, assigned a percentile score, and over- or underweights per asset class were determined based on the combined, equal-weighted score. This intuitive method generated high information ratios and a significant outperformance for a portfolio invested in stocks and bonds in the United States, the United Kingdom, the Eurozone, and Japan. The results held up in various robustness checks and were stronger for riskier assets. The individual indicators as well as the resulting scores can be presented in a dashboard. TOPICS:Portfolio management/multi-asset allocation, portfolio theory, portfolio construction Key Findings • Tactical asset allocation decisions are often based on (and justified by) macroeconomic developments and valuation ratios. • This article shows that a simple combination approach based on percentile scores of standard indicators from four scientifically valid areas (valuation, trend, risk, and macroeconomics) can significantly improve a multi-asset portfolio’s performance and generate high information ratios. • The individual indicators and the resulting scores can be presented in a dashboard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吉吉国王发布了新的文献求助10
1秒前
Eric_chao完成签到,获得积分10
1秒前
学术拉机完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
Litm完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
NexusExplorer应助沙漠水手采纳,获得10
5秒前
sagacity发布了新的文献求助10
5秒前
6秒前
123456发布了新的文献求助10
6秒前
脑洞疼应助菜菜采纳,获得10
7秒前
雨水一盒完成签到,获得积分10
7秒前
爆米花应助chx123采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
iKYy发布了新的文献求助10
9秒前
风趣惜灵发布了新的文献求助10
9秒前
10秒前
10秒前
等待纸鹤发布了新的文献求助10
10秒前
11秒前
柴先生完成签到,获得积分10
11秒前
李健的小迷弟应助水123采纳,获得10
12秒前
爆米花应助Rubia采纳,获得10
12秒前
12秒前
13秒前
Dr终年发布了新的文献求助10
13秒前
爆米花应助wylwyl采纳,获得10
13秒前
GXY发布了新的文献求助10
13秒前
传奇3应助淡淡的鸽子采纳,获得10
13秒前
14秒前
sjy发布了新的文献求助10
14秒前
15秒前
15秒前
缥缈荠关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293