已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How Good Is Tactical Asset Allocation Using Standard Indicators

资产配置 资产(计算机安全) 文件夹 资产管理 业务 经济 另类资产 精算学
作者
Michael Schnetzer
出处
期刊:The Journal of Portfolio Management [Pageant Media US]
卷期号:46 (6): 120-134 被引量:1
标识
DOI:10.3905/jpm.2020.1.145
摘要

Tactical asset allocation decisions are often based on (and justified by) macroeconomic developments and valuation ratios. However, why should using such publicly available information provide an investment edge? This article investigates whether a simple combination approach based on popular indicators can improve a multi-asset portfolio’s performance. The author developed a method to assess each asset class’s attractiveness using standard and economically motivated indicators from four scientifically valid areas (valuation, trend, risk, and macroeconomics). Each indicator was evaluated relative to its own history, assigned a percentile score, and over- or underweights per asset class were determined based on the combined, equal-weighted score. This intuitive method generated high information ratios and a significant outperformance for a portfolio invested in stocks and bonds in the United States, the United Kingdom, the Eurozone, and Japan. The results held up in various robustness checks and were stronger for riskier assets. The individual indicators as well as the resulting scores can be presented in a dashboard. TOPICS:Portfolio management/multi-asset allocation, portfolio theory, portfolio construction Key Findings • Tactical asset allocation decisions are often based on (and justified by) macroeconomic developments and valuation ratios. • This article shows that a simple combination approach based on percentile scores of standard indicators from four scientifically valid areas (valuation, trend, risk, and macroeconomics) can significantly improve a multi-asset portfolio’s performance and generate high information ratios. • The individual indicators and the resulting scores can be presented in a dashboard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mist完成签到 ,获得积分10
刚刚
1秒前
浪里白条发布了新的文献求助10
1秒前
科研天才完成签到 ,获得积分10
3秒前
4秒前
阿楷发布了新的文献求助10
6秒前
tough_cookie完成签到 ,获得积分10
9秒前
10秒前
11秒前
L1完成签到 ,获得积分10
12秒前
科研通AI6.1应助wodeqiche2007采纳,获得10
12秒前
vincentyang发布了新的文献求助10
13秒前
QinMengyao发布了新的文献求助10
14秒前
14秒前
14秒前
cc完成签到 ,获得积分10
17秒前
17秒前
懒羊羊发布了新的文献求助10
17秒前
Ye完成签到,获得积分10
18秒前
19秒前
19秒前
21秒前
雷雷发布了新的文献求助10
21秒前
科研通AI6.1应助cathe采纳,获得10
25秒前
penghui完成签到,获得积分10
25秒前
脑洞疼应助QUAV采纳,获得10
26秒前
sujinyu发布了新的文献求助10
27秒前
懒羊羊完成签到,获得积分10
29秒前
在水一方应助完美的思菱采纳,获得10
30秒前
Happy完成签到,获得积分10
30秒前
liu发布了新的文献求助10
31秒前
吐丝麵包完成签到 ,获得积分10
35秒前
cathe完成签到,获得积分10
37秒前
JamesPei应助江江江采纳,获得10
38秒前
刘萍完成签到 ,获得积分10
39秒前
在水一方完成签到 ,获得积分0
39秒前
39秒前
yqq完成签到 ,获得积分10
40秒前
40秒前
zybbb完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787903
求助须知:如何正确求助?哪些是违规求助? 5702431
关于积分的说明 15473009
捐赠科研通 4916130
什么是DOI,文献DOI怎么找? 2646159
邀请新用户注册赠送积分活动 1593838
关于科研通互助平台的介绍 1548165