How Good Is Tactical Asset Allocation Using Standard Indicators

资产配置 资产(计算机安全) 文件夹 资产管理 业务 经济 另类资产 精算学
作者
Michael Schnetzer
出处
期刊:The Journal of Portfolio Management [Euromoney Institutional Investor]
卷期号:46 (6): 120-134 被引量:1
标识
DOI:10.3905/jpm.2020.1.145
摘要

Tactical asset allocation decisions are often based on (and justified by) macroeconomic developments and valuation ratios. However, why should using such publicly available information provide an investment edge? This article investigates whether a simple combination approach based on popular indicators can improve a multi-asset portfolio’s performance. The author developed a method to assess each asset class’s attractiveness using standard and economically motivated indicators from four scientifically valid areas (valuation, trend, risk, and macroeconomics). Each indicator was evaluated relative to its own history, assigned a percentile score, and over- or underweights per asset class were determined based on the combined, equal-weighted score. This intuitive method generated high information ratios and a significant outperformance for a portfolio invested in stocks and bonds in the United States, the United Kingdom, the Eurozone, and Japan. The results held up in various robustness checks and were stronger for riskier assets. The individual indicators as well as the resulting scores can be presented in a dashboard. TOPICS:Portfolio management/multi-asset allocation, portfolio theory, portfolio construction Key Findings • Tactical asset allocation decisions are often based on (and justified by) macroeconomic developments and valuation ratios. • This article shows that a simple combination approach based on percentile scores of standard indicators from four scientifically valid areas (valuation, trend, risk, and macroeconomics) can significantly improve a multi-asset portfolio’s performance and generate high information ratios. • The individual indicators and the resulting scores can be presented in a dashboard.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助巧克力圣诞采纳,获得10
刚刚
卢雨生发布了新的文献求助10
刚刚
kjikji发布了新的文献求助10
1秒前
三三椋椋发布了新的文献求助10
1秒前
张张发布了新的文献求助10
1秒前
吴大打完成签到,获得积分10
2秒前
Liuxinyiliu完成签到,获得积分10
2秒前
大个应助伊卡洛斯采纳,获得10
3秒前
吴彦祖发布了新的文献求助10
4秒前
美好的涑发布了新的文献求助10
4秒前
脑洞疼应助左丘傲菡采纳,获得10
4秒前
英俊的铭应助舒心初晴采纳,获得10
4秒前
4秒前
浮游应助席成风采纳,获得10
5秒前
年轻秀发布了新的文献求助10
5秒前
5秒前
武状元发布了新的文献求助10
5秒前
archieeee完成签到,获得积分10
6秒前
7秒前
18902319112关注了科研通微信公众号
7秒前
传奇3应助rat采纳,获得10
8秒前
wanci应助伏尾窗的猫采纳,获得30
8秒前
8秒前
王志涛发布了新的文献求助10
8秒前
soar完成签到 ,获得积分10
9秒前
AAA房地产小王完成签到,获得积分10
9秒前
聪慧的正豪应助哭泣青烟采纳,获得10
9秒前
10秒前
10秒前
眼睛大的新之完成签到,获得积分10
10秒前
兴奋白枫完成签到,获得积分10
11秒前
11秒前
卢雨生完成签到,获得积分20
11秒前
12秒前
qcl驳回了故酒应助
12秒前
Yolanda完成签到 ,获得积分10
12秒前
12秒前
浮生完成签到 ,获得积分10
12秒前
leaolf应助Rita采纳,获得10
12秒前
Unicorn完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012