已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era

赫尔格 大数据 人工智能 计算机科学 频道(广播) 计算生物学 机器学习 数据挖掘 内科学 生物 医学 钾通道 计算机网络
作者
Vishal B. Siramshetty,Dac-Trung Nguyen,Natalia J. Martinez,Noel Southall,Anton Simeonov,Alexey V. Zakharov
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6007-6019 被引量:13
标识
DOI:10.1021/acs.jcim.0c00884
摘要

The rise of novel artificial intelligence (AI) methods necessitates their benchmarking against classical machine learning for a typical drug-discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), leads to a prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for the assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here, we perform a comprehensive comparison of hERG effect prediction models based on classical approaches (random forests and gradient boosting) and modern AI methods [deep neural networks (DNNs) and recurrent neural networks (RNNs)]. The training set (∼9000 compounds) was compiled by integrating the hERG bioactivity data from the ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-value continuous vectors derived from chemical autoencoders trained on a large chemical space (>1.5 million compounds). The models were prospectively validated on ∼840 in-house compounds screened in the same thallium flux assay. The best results were obtained with the XGBoost method and RDKit descriptors. The comparison of models based only on latent descriptors revealed that the DNNs performed significantly better than the classical methods. The RNNs that operate on SMILES provided the highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Furthermore, we shed light on the potential of AI methods to exploit the big data in chemistry and generate novel chemical representations useful in predictive modeling and tailoring a new chemical space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
如月霖完成签到,获得积分10
3秒前
李健应助666采纳,获得10
3秒前
4秒前
5秒前
dasdsa发布了新的文献求助10
5秒前
5秒前
二道白河发布了新的文献求助10
6秒前
失眠傲之发布了新的文献求助10
6秒前
七七发布了新的文献求助10
7秒前
ventus发布了新的文献求助10
7秒前
7秒前
yuaner发布了新的文献求助10
8秒前
9秒前
10秒前
啊啊纠结啊睡觉觉完成签到 ,获得积分10
10秒前
洋溢发布了新的文献求助10
11秒前
Hello应助yuaner采纳,获得10
11秒前
5866发布了新的文献求助10
11秒前
JamesPei应助黄金矿工采纳,获得10
11秒前
12秒前
bkagyin应助fs采纳,获得10
13秒前
psy小黄人应助zhizhi2021采纳,获得10
14秒前
斑马景茶完成签到,获得积分10
14秒前
香蕉觅云应助yyc采纳,获得50
14秒前
彭于晏应助andyz采纳,获得100
15秒前
lm完成签到,获得积分10
15秒前
申申发布了新的文献求助50
15秒前
娜娜发布了新的文献求助10
16秒前
ventus完成签到,获得积分10
18秒前
19秒前
lm发布了新的文献求助10
19秒前
5866关注了科研通微信公众号
22秒前
情怀应助JV采纳,获得10
22秒前
穷且爱睡不坠青云之志完成签到,获得积分10
23秒前
研友_Z33EGZ完成签到,获得积分10
24秒前
24秒前
小志Ya发布了新的文献求助10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171230
求助须知:如何正确求助?哪些是违规求助? 2822135
关于积分的说明 7938200
捐赠科研通 2482633
什么是DOI,文献DOI怎么找? 1322678
科研通“疑难数据库(出版商)”最低求助积分说明 633676
版权声明 602627