Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era

赫尔格 大数据 人工智能 计算机科学 频道(广播) 计算生物学 机器学习 数据挖掘 内科学 生物 医学 钾通道 计算机网络
作者
Vishal B. Siramshetty,Dac-Trung Nguyen,Natalia J. Martinez,Noel Southall,Anton Simeonov,Alexey V. Zakharov
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6007-6019 被引量:13
标识
DOI:10.1021/acs.jcim.0c00884
摘要

The rise of novel artificial intelligence (AI) methods necessitates their benchmarking against classical machine learning for a typical drug-discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), leads to a prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for the assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here, we perform a comprehensive comparison of hERG effect prediction models based on classical approaches (random forests and gradient boosting) and modern AI methods [deep neural networks (DNNs) and recurrent neural networks (RNNs)]. The training set (∼9000 compounds) was compiled by integrating the hERG bioactivity data from the ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-value continuous vectors derived from chemical autoencoders trained on a large chemical space (>1.5 million compounds). The models were prospectively validated on ∼840 in-house compounds screened in the same thallium flux assay. The best results were obtained with the XGBoost method and RDKit descriptors. The comparison of models based only on latent descriptors revealed that the DNNs performed significantly better than the classical methods. The RNNs that operate on SMILES provided the highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Furthermore, we shed light on the potential of AI methods to exploit the big data in chemistry and generate novel chemical representations useful in predictive modeling and tailoring a new chemical space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
刚刚
沐沐发布了新的文献求助20
1秒前
浮游应助Lala采纳,获得10
1秒前
SciGPT应助hhh采纳,获得10
1秒前
高帅帅完成签到,获得积分10
1秒前
慕青应助曲凯采纳,获得10
1秒前
科研通AI5应助Jun2025采纳,获得10
1秒前
2秒前
3秒前
4秒前
十三完成签到,获得积分10
4秒前
饱饱完成签到,获得积分10
5秒前
俭朴的皮卡丘完成签到 ,获得积分10
5秒前
cyan发布了新的文献求助30
5秒前
着急的青枫应助ANXU采纳,获得10
6秒前
Ava应助LlLly采纳,获得10
6秒前
赘婿应助寒冷的断秋采纳,获得10
6秒前
张迪发布了新的文献求助10
7秒前
Herman完成签到 ,获得积分10
7秒前
7秒前
小青椒应助Aliez采纳,获得50
7秒前
饱饱发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
贺知什么书完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
MM完成签到,获得积分10
11秒前
11秒前
浮游应助柚柚子采纳,获得10
11秒前
852应助零食宝采纳,获得10
11秒前
12秒前
明理向秋发布了新的文献求助30
13秒前
13秒前
田様应助王岩采纳,获得10
13秒前
落后的可仁完成签到,获得积分10
13秒前
TCL发布了新的文献求助10
13秒前
义气的雪珍关注了科研通微信公众号
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905784
求助须知:如何正确求助?哪些是违规求助? 4183599
关于积分的说明 12990865
捐赠科研通 3949812
什么是DOI,文献DOI怎么找? 2166128
邀请新用户注册赠送积分活动 1184660
关于科研通互助平台的介绍 1090941