已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era

赫尔格 大数据 人工智能 计算机科学 频道(广播) 计算生物学 机器学习 数据挖掘 内科学 生物 医学 钾通道 计算机网络
作者
Vishal B. Siramshetty,Dac-Trung Nguyen,Natalia J. Martinez,Noel Southall,Anton Simeonov,Alexey V. Zakharov
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6007-6019 被引量:13
标识
DOI:10.1021/acs.jcim.0c00884
摘要

The rise of novel artificial intelligence (AI) methods necessitates their benchmarking against classical machine learning for a typical drug-discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), leads to a prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for the assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here, we perform a comprehensive comparison of hERG effect prediction models based on classical approaches (random forests and gradient boosting) and modern AI methods [deep neural networks (DNNs) and recurrent neural networks (RNNs)]. The training set (∼9000 compounds) was compiled by integrating the hERG bioactivity data from the ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-value continuous vectors derived from chemical autoencoders trained on a large chemical space (>1.5 million compounds). The models were prospectively validated on ∼840 in-house compounds screened in the same thallium flux assay. The best results were obtained with the XGBoost method and RDKit descriptors. The comparison of models based only on latent descriptors revealed that the DNNs performed significantly better than the classical methods. The RNNs that operate on SMILES provided the highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Furthermore, we shed light on the potential of AI methods to exploit the big data in chemistry and generate novel chemical representations useful in predictive modeling and tailoring a new chemical space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星点完成签到 ,获得积分10
1秒前
yang发布了新的文献求助10
2秒前
拉长的迎曼完成签到 ,获得积分10
5秒前
善学以致用应助zzzz采纳,获得10
6秒前
7秒前
故然完成签到 ,获得积分10
8秒前
9秒前
Hello应助轩辕冰夏采纳,获得10
9秒前
峥嵘完成签到,获得积分10
10秒前
FIN发布了新的文献求助80
10秒前
QZW发布了新的文献求助10
14秒前
吕懿发布了新的文献求助10
14秒前
霜降完成签到 ,获得积分10
15秒前
JamesPei应助yang采纳,获得10
16秒前
18秒前
19秒前
由道罡完成签到 ,获得积分10
19秒前
20秒前
Jonas完成签到,获得积分10
20秒前
飞鸿影下发布了新的文献求助10
23秒前
24秒前
找文献完成签到 ,获得积分10
24秒前
24秒前
霜降发布了新的文献求助10
24秒前
尊敬的凝丹完成签到 ,获得积分10
24秒前
羊羊羊羊羊羊完成签到 ,获得积分10
25秒前
26秒前
无限猫咪发布了新的文献求助10
27秒前
lili完成签到,获得积分10
27秒前
zzzz发布了新的文献求助10
30秒前
sxb10101完成签到,获得积分0
31秒前
唐新惠完成签到 ,获得积分10
31秒前
36秒前
李壮学发布了新的文献求助20
37秒前
BA1完成签到,获得积分10
38秒前
随机科研完成签到,获得积分10
40秒前
打打应助xuzb采纳,获得10
41秒前
船长完成签到,获得积分10
44秒前
一枚学术渣渣完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616973
求助须知:如何正确求助?哪些是违规求助? 4701313
关于积分的说明 14913199
捐赠科研通 4747150
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049