Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era

赫尔格 大数据 人工智能 计算机科学 频道(广播) 计算生物学 机器学习 数据挖掘 内科学 生物 医学 钾通道 计算机网络
作者
Vishal B. Siramshetty,Dac-Trung Nguyen,Natalia J. Martinez,Noel Southall,Anton Simeonov,Alexey V. Zakharov
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6007-6019 被引量:13
标识
DOI:10.1021/acs.jcim.0c00884
摘要

The rise of novel artificial intelligence (AI) methods necessitates their benchmarking against classical machine learning for a typical drug-discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), leads to a prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for the assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here, we perform a comprehensive comparison of hERG effect prediction models based on classical approaches (random forests and gradient boosting) and modern AI methods [deep neural networks (DNNs) and recurrent neural networks (RNNs)]. The training set (∼9000 compounds) was compiled by integrating the hERG bioactivity data from the ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-value continuous vectors derived from chemical autoencoders trained on a large chemical space (>1.5 million compounds). The models were prospectively validated on ∼840 in-house compounds screened in the same thallium flux assay. The best results were obtained with the XGBoost method and RDKit descriptors. The comparison of models based only on latent descriptors revealed that the DNNs performed significantly better than the classical methods. The RNNs that operate on SMILES provided the highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Furthermore, we shed light on the potential of AI methods to exploit the big data in chemistry and generate novel chemical representations useful in predictive modeling and tailoring a new chemical space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼虾完成签到 ,获得积分10
刚刚
汉堡包应助杨洋采纳,获得10
1秒前
墩墩应助高高采纳,获得10
2秒前
鸿十三陵发布了新的文献求助10
2秒前
2秒前
3秒前
洁净的幼珊完成签到,获得积分10
4秒前
4秒前
stt完成签到,获得积分10
7秒前
wykang完成签到,获得积分10
7秒前
8秒前
mmb发布了新的文献求助10
8秒前
博修发布了新的文献求助10
8秒前
大马哥完成签到 ,获得积分10
9秒前
zy发布了新的文献求助10
10秒前
10秒前
11秒前
zhengwei关注了科研通微信公众号
11秒前
maxiaochen发布了新的文献求助10
11秒前
Y0Y0发布了新的文献求助10
12秒前
TMUEH_FCL发布了新的文献求助30
12秒前
12秒前
yznfly应助stt采纳,获得30
12秒前
Ava应助Ran采纳,获得10
15秒前
16秒前
zy完成签到,获得积分10
16秒前
小李博士发布了新的文献求助10
16秒前
杨洋发布了新的文献求助10
17秒前
17秒前
17秒前
zhaoyuyuan完成签到,获得积分10
18秒前
uu发布了新的文献求助10
18秒前
沈括完成签到,获得积分10
19秒前
包容新蕾完成签到 ,获得积分10
20秒前
丘比特应助罗一斩采纳,获得10
20秒前
22秒前
wykang发布了新的文献求助10
22秒前
安an完成签到,获得积分10
23秒前
李健的小迷弟应助zhaoyuyuan采纳,获得10
23秒前
汉堡包应助天天采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571