Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era

赫尔格 大数据 人工智能 计算机科学 频道(广播) 计算生物学 机器学习 数据挖掘 内科学 生物 医学 钾通道 计算机网络
作者
Vishal B. Siramshetty,Dac-Trung Nguyen,Natalia J. Martinez,Noel Southall,Anton Simeonov,Alexey V. Zakharov
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6007-6019 被引量:13
标识
DOI:10.1021/acs.jcim.0c00884
摘要

The rise of novel artificial intelligence (AI) methods necessitates their benchmarking against classical machine learning for a typical drug-discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), leads to a prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for the assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here, we perform a comprehensive comparison of hERG effect prediction models based on classical approaches (random forests and gradient boosting) and modern AI methods [deep neural networks (DNNs) and recurrent neural networks (RNNs)]. The training set (∼9000 compounds) was compiled by integrating the hERG bioactivity data from the ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-value continuous vectors derived from chemical autoencoders trained on a large chemical space (>1.5 million compounds). The models were prospectively validated on ∼840 in-house compounds screened in the same thallium flux assay. The best results were obtained with the XGBoost method and RDKit descriptors. The comparison of models based only on latent descriptors revealed that the DNNs performed significantly better than the classical methods. The RNNs that operate on SMILES provided the highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Furthermore, we shed light on the potential of AI methods to exploit the big data in chemistry and generate novel chemical representations useful in predictive modeling and tailoring a new chemical space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
LinHan发布了新的文献求助10
2秒前
秋风来临之时完成签到 ,获得积分10
3秒前
3秒前
Hello应助Rui采纳,获得100
3秒前
小木子发布了新的文献求助10
4秒前
4秒前
4秒前
SciGPT应助xibei采纳,获得10
4秒前
5秒前
小二郎应助科研通管家采纳,获得20
5秒前
xubobo发布了新的文献求助10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得50
6秒前
qingmoheng应助科研通管家采纳,获得10
6秒前
NGU发布了新的文献求助10
6秒前
wxyshare应助科研通管家采纳,获得10
6秒前
Zyc完成签到,获得积分10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
iNk应助早睡采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
wxyshare应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
华仔应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582