亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era

赫尔格 大数据 人工智能 计算机科学 频道(广播) 计算生物学 机器学习 数据挖掘 内科学 生物 医学 钾通道 计算机网络
作者
Vishal B. Siramshetty,Dac-Trung Nguyen,Natalia J. Martinez,Noel Southall,Anton Simeonov,Alexey V. Zakharov
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6007-6019 被引量:13
标识
DOI:10.1021/acs.jcim.0c00884
摘要

The rise of novel artificial intelligence (AI) methods necessitates their benchmarking against classical machine learning for a typical drug-discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), leads to a prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for the assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here, we perform a comprehensive comparison of hERG effect prediction models based on classical approaches (random forests and gradient boosting) and modern AI methods [deep neural networks (DNNs) and recurrent neural networks (RNNs)]. The training set (∼9000 compounds) was compiled by integrating the hERG bioactivity data from the ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-value continuous vectors derived from chemical autoencoders trained on a large chemical space (>1.5 million compounds). The models were prospectively validated on ∼840 in-house compounds screened in the same thallium flux assay. The best results were obtained with the XGBoost method and RDKit descriptors. The comparison of models based only on latent descriptors revealed that the DNNs performed significantly better than the classical methods. The RNNs that operate on SMILES provided the highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Furthermore, we shed light on the potential of AI methods to exploit the big data in chemistry and generate novel chemical representations useful in predictive modeling and tailoring a new chemical space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空空完成签到,获得积分10
33秒前
蔡秋景发布了新的文献求助10
36秒前
36秒前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
妮娜完成签到,获得积分20
1分钟前
妮娜发布了新的文献求助10
1分钟前
1分钟前
Shamare发布了新的文献求助10
1分钟前
金沐栋发布了新的文献求助10
2分钟前
2分钟前
香菜张发布了新的文献求助10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
iman完成签到,获得积分10
4分钟前
4分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
今后应助斯文若魔采纳,获得10
5分钟前
shhoing应助zbx采纳,获得10
5分钟前
5分钟前
5分钟前
科研通AI6应助香菜张采纳,获得10
5分钟前
情怀应助科研进化中采纳,获得10
5分钟前
白华苍松发布了新的文献求助20
5分钟前
香菜张发布了新的文献求助10
5分钟前
5分钟前
小蘑菇应助白华苍松采纳,获得10
5分钟前
zh完成签到,获得积分10
5分钟前
6分钟前
6分钟前
陈文学完成签到,获得积分10
6分钟前
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529261
求助须知:如何正确求助?哪些是违规求助? 4618429
关于积分的说明 14562598
捐赠科研通 4557443
什么是DOI,文献DOI怎么找? 2497532
邀请新用户注册赠送积分活动 1477742
关于科研通互助平台的介绍 1449173