嗜酸细胞瘤
嫌色细胞
川东北117
肾细胞癌
分割
人工智能
肾嗜酸细胞瘤
放射科
卷积神经网络
医学
病理
计算机科学
清除单元格
生物
干细胞
川地34
遗传学
作者
Amir Baghdadi,Naif A. Aldhaam,Ahmed S. Elsayed,Ahmed A. Hussein,Lora Cavuoto,Eric Kauffman,Khurshid A. Guru
出处
期刊:BJUI
[Wiley]
日期:2020-01-04
卷期号:125 (4): 553-560
被引量:50
摘要
To develop and evaluate the feasibility of an objective method using artificial intelligence (AI) and image processing in a semi-automated fashion for tumour-to-cortex peak early-phase enhancement ratio (PEER) in order to differentiate CD117(+) oncocytoma from the chromophobe subtype of renal cell carcinoma (ChRCC) using convolutional neural networks (CNNs) on computed tomography imaging.The CNN was trained and validated to identify the kidney + tumour areas in images from 192 patients. The tumour type was differentiated through automated measurement of PEER after manual segmentation of tumours. The performance of this diagnostic model was compared with that of manual expert identification and tumour pathology with regard to accuracy, sensitivity and specificity, along with the root-mean-square error (RMSE), for the remaining 20 patients with CD117(+) oncocytoma or ChRCC.The mean ± sd Dice similarity score for segmentation was 0.66 ± 0.14 for the CNN model to identify the kidney + tumour areas. PEER evaluation achieved accuracy of 95% in tumour type classification (100% sensitivity and 89% specificity) compared with the final pathology results (RMSE of 0.15 for PEER ratio).We have shown that deep learning could help to produce reliable discrimination of CD117(+) benign oncocytoma and malignant ChRCC through PEER measurements obtained by computer vision.
科研通智能强力驱动
Strongly Powered by AbleSci AI