Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis

核定位序列 NLS公司 人工智能 判别式 计算机科学 信号肽 支持向量机 多元统计 假阳性悖论 分类器(UML) 鉴定(生物学) 计算生物学 模式识别(心理学) 机器学习 自然语言处理 肽序列 核心 生物 生物化学 基因 细胞生物学 植物
作者
Yun Guo,Yang Yang,Yan Huang,Hong‐Bin Shen
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:591: 113565-113565 被引量:28
标识
DOI:10.1016/j.ab.2019.113565
摘要

Nuclear localization signals (NLSs) are peptides that target proteins to the nucleus by binding to carrier proteins in the cytoplasm that transport their cargo across the nuclear membrane. Accurate identification of NLSs can help elucidate the functions of nuclear protein complexes. The currently known NLS predictors are usually specific to certain species or largely dependent on prior knowledge of NLS basic residues. Thus, a more general predictor is highly desired to reduce the potentially high false positives or false negatives in discovering new NLSs. Here, we report a new method, INSP (Identification Nucleus Signal Peptide), to effectively identify NLS mainly based on statistical knowledge and machine learning algorithms. In our NLS machine learning model, we considered the query protein sequence as text and extracted the sequence context features using a natural language model. These word-vector features encode discriminative knowledge of NLS motif frequency and are thus useful for model recognition. The output of the machine learning model will be fused with statistical knowledge of the query sequence to build a final multivariate regression model for NLS peptide identification. The experimental results demonstrate a promising performance of the new INSP approach. INSP is freely available at: www.csbio.sjtu.edu.cn/bioinf/INSP/for academic use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安钢铁侠完成签到,获得积分10
刚刚
学术z完成签到,获得积分10
刚刚
小二郎应助yty采纳,获得10
刚刚
神帅酷哥完成签到,获得积分10
2秒前
2秒前
ljw完成签到,获得积分10
2秒前
xzy发布了新的文献求助20
2秒前
2秒前
守夜人发布了新的文献求助10
3秒前
3秒前
3秒前
珲雯发布了新的文献求助10
4秒前
4秒前
德尔塔捱斯完成签到,获得积分10
4秒前
小夏完成签到 ,获得积分0
5秒前
luuuuuu完成签到,获得积分10
5秒前
太阳alright完成签到,获得积分10
5秒前
雨辰发布了新的文献求助10
6秒前
在水一方应助lai采纳,获得10
6秒前
Yiiimmmwang完成签到,获得积分20
6秒前
FashionBoy应助小田心采纳,获得10
6秒前
Orange应助芳芳采纳,获得10
7秒前
汉堡包应助斯文黎云采纳,获得10
7秒前
通~发布了新的文献求助10
8秒前
qifeng完成签到,获得积分10
8秒前
屹舟发布了新的文献求助10
8秒前
宇文数学完成签到 ,获得积分10
9秒前
9秒前
爆米花应助大方嵩采纳,获得10
9秒前
姚文超发布了新的文献求助10
10秒前
10秒前
自由的寒香完成签到 ,获得积分10
10秒前
研友_LJQ4o8完成签到,获得积分10
11秒前
lkc发布了新的文献求助10
11秒前
11秒前
雨辰完成签到,获得积分10
11秒前
卫卫完成签到 ,获得积分10
11秒前
12秒前
现代剑成完成签到,获得积分10
13秒前
杨耑耑完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794