作者
Mahesh N. Varma,Ashok Kumar Gupta,Partha Ghosal,Abhradeep Majumder
摘要
Constructed wetlands (CWs) are one of the most promising and sustainable alternatives for wastewater treatment that are being successfully implemented in several countries, especially in tropical and sub-tropical regions. The predominant mechanisms of removal of contaminants in CWs are microbial degradation, phytodegradation, phytoextraction, filtration, sedimentation, and adsorption, etc. Vertical flow subsurface CWs and hybrid CWs demonstrated promising results in terms of TN, BOD, and COD removal, while horizontal flow subsurface CWs were proficient in removal of TP. The performance of the CWs depends upon a various factors, such as hydraulic loading rate, pH, dissolved oxygen, temperature, etc. Among these, low temperature had the most antagonistic effect on the performance of the CWs because freezing ambient temperature lead to ice formation, hydraulic imperfections, malfunctioning of biotic and abiotic components, etc. Over the past three decades, thousands of studies have been conducted involving treatment of wastewater using CWs, among which only few have addressed the issues and concerns of cold climate representing a significant research gap in this field. Furthermore, the performance of CWs in terms of TN, TP, and COD removal was significantly lower in cold climates than that in tropical and sub-tropical climates. In order to find suitable remedies to overcome the challenges faced in cold climate various modifications, such as incorporating greenhouse structure, providing insulating materials, bio-augmentation, identification of suitable macrophytes, etc., in around 20 different scenarios have been studied. Greenhouse construction led to 20% increase in removal of TN and COD, while plant collocation accounted for up to 18% increase in the removal of COD. Artificial aeration, insulation and bio-augmentation also enhanced the performance of the CWs in low temperatures.