Beamform processing for sonic imaging using monopole and dipole sources

方位角 钻孔 声学 波形 地质学 噪音(视频) 偶极子 事件(粒子物理) 振幅 声波测井 地震学 物理 光学 计算机科学 雷达 电信 图像(数学) 人工智能 岩土工程 量子力学
作者
Nobuyasu Hirabayashi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (1): D1-D14 被引量:8
标识
DOI:10.1190/geo2020-0235.1
摘要

New processing techniques are presented that enhance event signals for sonic imaging using monopole and dipole sources. The techniques use the azimuthally spaced receivers of a sonic logging tool. Sonic imaging, which is also known as borehole acoustic reflection surveys, uses a sonic logging tool in a fluid-filled borehole to image geologic structures. Signals from monopole and dipole sources are reflected from geologic interfaces and recorded by arrays of receivers of the same tool. Because the amplitudes of the event signals are very weak compared with the direct waves, borehole modes, and noise, the event signals are often difficult to extract. To enhance the weak event signals, beamforming techniques were developed to stack the waveforms from azimuthally spaced receivers of the tool for given azimuthal directions. For the incident P-waves from the monopole source, phase arrival times for the azimuthal receivers are time shifted for stacking using properties of wave propagation in the borehole. For the incident SH-waves from the dipole source, the signs of waveforms for the receivers are changed for specified azimuths. When the waveforms are stacked for the back azimuth of the event signals, the signal-to-noise ratio of the event signals is significantly improved because the event signals are enhanced whereas the direct waves are relatively smeared, and random noise is canceled. Therefore, the stacked waveforms also provide accurate back azimuths of the incident waves.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘羡222发布了新的文献求助20
1秒前
魏伯安发布了新的文献求助10
1秒前
2秒前
不爱吃糖完成签到,获得积分10
2秒前
3秒前
balabala发布了新的文献求助10
4秒前
睿123456完成签到,获得积分10
5秒前
此话当真完成签到,获得积分10
6秒前
8秒前
慕青应助wmmm采纳,获得10
9秒前
科研通AI2S应助夏夏采纳,获得10
9秒前
隐形曼青应助夏夏采纳,获得10
9秒前
睿123456发布了新的文献求助10
9秒前
Godzilla完成签到,获得积分10
9秒前
李健应助ponyy采纳,获得30
9秒前
科研通AI5应助skier采纳,获得10
10秒前
猪猪hero应助Jasen采纳,获得10
11秒前
俭朴的大有完成签到,获得积分10
12秒前
大侠发布了新的文献求助10
12秒前
赵大宝完成签到,获得积分10
12秒前
14秒前
跳跃曼文发布了新的文献求助30
15秒前
15秒前
研友_VZG7GZ应助稀罕你采纳,获得10
15秒前
17秒前
Aries完成签到,获得积分10
19秒前
19秒前
Pretrial完成签到 ,获得积分10
19秒前
Jocelyn7发布了新的文献求助10
20秒前
wmmm发布了新的文献求助10
20秒前
余笙发布了新的文献求助10
21秒前
充电宝应助冷傲迎梦采纳,获得10
21秒前
彭于晏应助qi采纳,获得30
21秒前
科研通AI2S应助shor0414采纳,获得10
21秒前
ponyy发布了新的文献求助30
22秒前
秋之月发布了新的文献求助10
23秒前
skier发布了新的文献求助10
24秒前
balabala完成签到,获得积分20
24秒前
隐形曼青应助kb采纳,获得10
25秒前
yanyan发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824