The Impact of Prediction Errors in the Domestic Peak Power Demand Management

可靠性工程 峰值需求 能源管理 计算机科学 电源管理 需求响应 能源管理系统 电池(电) 功率(物理) 电力系统 需求预测 太阳能 电力需求 自回归模型 汽车工程 能量(信号处理) 工程类 运筹学 电气工程 计量经济学 统计 经济 功率消耗 物理 量子力学 数学
作者
Khizir Mahmud,Jayashri Ravishankar,M. J. Hossain,Zhao Yang Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (7): 4567-4579 被引量:38
标识
DOI:10.1109/tii.2019.2946292
摘要

In this article, the impact of prediction errors on the performance of a domestic power demand management is thoroughly investigated. Initially, real-time peak power demand management system using battery energy storage systems (BESSs), electric vehicles (EVs), and photovoltaics (PV) systems is designed and modeled. The model uses real-time load demand of consumers and their roof-top PV power generation capability, and the charging-discharging constraints of BESSs and EVs to provide a coordinated response for peak power demand management. Afterward, this real-time power demand management system is modeled using autoregressive moving average and artificial neural networks-based prediction techniques. The predicted values are used to provide a day-ahead peak power demand management decision. However, any significant error in the prediction process results in an incorrect energy sharing by the energy management system. In this research, two different customers connected to a real-power distribution network with realistic load pattern and uncertainty are used to investigate the impact of this prediction error on the efficacy of an energy management system. The study shows that in some cases the prediction error can be more than 300%. The average capacity of energy support due to this prediction error can go up to 0.9 kWh, which increases battery charging-discharging cycles, hence reducing battery life and increasing energy cost. It also investigates a possible relationship between environmental conditions (solar insolation, temperature, and humidity) and consumers' power demand. Considering the weather conditions, a day-ahead uncertainty detection technique is proposed for providing an improved power demand management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到 ,获得积分10
刚刚
ASUNA完成签到,获得积分10
1秒前
XTM发布了新的文献求助10
1秒前
BareBear应助小溜溜采纳,获得10
1秒前
cocolu应助小溜溜采纳,获得10
1秒前
顾矜应助小溜溜采纳,获得10
1秒前
桐桐应助SiDi采纳,获得10
1秒前
1秒前
啾比文发布了新的文献求助10
1秒前
南宫臻发布了新的文献求助10
2秒前
neverever完成签到,获得积分10
2秒前
CXS完成签到,获得积分10
3秒前
顾青应助千逐采纳,获得10
3秒前
4秒前
labxgr发布了新的文献求助10
6秒前
小明发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
丘比特应助啾比文采纳,获得10
9秒前
9秒前
零下负七完成签到,获得积分10
9秒前
苇一完成签到,获得积分10
10秒前
现代的诗槐应助xinran采纳,获得10
10秒前
dengy发布了新的文献求助10
11秒前
小蘑菇应助23采纳,获得10
11秒前
looon完成签到,获得积分10
11秒前
阿布发布了新的文献求助10
12秒前
12秒前
田様应助Halo_Dai采纳,获得10
13秒前
13秒前
14秒前
小栗完成签到,获得积分10
14秒前
14秒前
zzzzzdz发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
Susan发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255