数学
数学证明
约束(计算机辅助设计)
非线性系统
变形(气象学)
类型(生物学)
论证(复杂分析)
薛定谔猫
身份(音乐)
纯数学
数学分析
数学物理
域代数上的
几何学
物理
量子力学
气象学
化学
生物
生物化学
声学
生态学
作者
Norihisa Ikoma,Kazunaga Tanaka
出处
期刊:Advances in Differential Equations
日期:2019-11-01
卷期号:24 (11/12)
被引量:27
标识
DOI:10.57262/ade/1571731543
摘要
We study the existence of $L^2$ normalized solutions for nonlinear Schr\"odinger equations and systems. Under new Palais-Smale type conditions we develop new deformation arguments for the constraint functional on $S_m=\{ u; \, \int_{\mathbf{R}^N} | u |^2=m\}$ or $S_{m_1} \times S_{m_2}$. As applications, we give other proofs to the results of [\cite[J:20], \cite[BdV:6], \cite[BS1:7]]. As to the results of [\cite[J:20], \cite[BdV:6]], our deformation result enables us to apply the genus theory directly to the corresponding functional to obtain infinitely many solutions. As to the result [\cite[BS1:7]], via our deformation result we can show the existence of vector solution without using constraint related to the Pohozaev identity.
科研通智能强力驱动
Strongly Powered by AbleSci AI