卤化物
钙钛矿(结构)
带隙
重组
溴化物
光致发光
电致发光
光电子学
无辐射复合
材料科学
光伏系统
相(物质)
光伏
化学
碘化物
太阳能电池
半导体
无机化学
纳米技术
结晶学
半导体材料
图层(电子)
生态学
生物
有机化学
生物化学
基因
作者
Francisco Peña‐Camargo,Pietro Caprioglio,Fengshuo Zu,Emilio Gutierrez‐Partida,Christian Wolff,Kai Oliver Brinkmann,Steve Albrecht,Thomas Riedl,Norbert Koch,Dieter Neher,Martin Stolterfoht
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2020-07-20
卷期号:5 (8): 2728-2736
被引量:134
标识
DOI:10.1021/acsenergylett.0c01104
摘要
Perovskites offer exciting opportunities to realize efficient multijunction photovoltaic devices. This requires high-VOC and often Br-rich perovskites, which currently suffer from halide segregation. Here, we study triple-cation perovskite cells over a wide bandgap range (∼1.5–1.9 eV). While all wide-gap cells (≥1.69 eV) experience rapid phase segregation under illumination, the electroluminescence spectra are less affected by this process. The measurements reveal a low radiative efficiency of the mixed halide phase which explains the VOC losses with increasing Br content. Photoluminescence measurements on nonsegregated partial cell stacks demonstrate that both transport layers (PTAA and C60) induce significant nonradiative interfacial recombination, especially in Br-rich (>30%) samples. Therefore, the presence of the segregated iodide-rich domains is not directly responsible for the VOC losses. Moreover, LiF can only improve the VOC of cells that are primarily limited by the n-interface (≤1.75 eV), resulting in 20% efficient 1.7 eV bandgap cells. However, a simultaneous optimization of the p-interface is necessary to further advance larger bandgap (≥1.75 eV) pin-type cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI