作者
Yuan Yu,Ziwei Chen,Haoxiang Yu,Xikun Zhang,Tingting Liu,Maoting Xia,Runtian Zheng,Miao Shui,Jie Shu
摘要
Carbon-based materials, as the traditional anodes for lithium and sodium ion batteries, have drawn extensive attention due to their low cost, available resources and superior cycling stability. Yet the inferior capacitance and sluggish kinetics of these materials severely restrict their further application in lithium and sodium ion batteries. For addressing the aforementioned issues, tremendous efforts have been made and many approaches are proposed, such as designing nanomaterials with various morphologies, creating numerous porosities, and heteroatoms doping. Among them, doping heteroatoms into the lattice of carbon-based materials is demonstrated to be an effective solution based on the results from the experimental and theoretical studies. This approach can modify several characteristics of carbon-based materials obviously, like expanding interlayer distance, generating numerous active sites, and improving electronic conductivity. Therefore, heteroatom-doped carbon-based materials present fantastic cycling stability, excellent rate performance and high capacities compared with pure carbon-based materials. Herein, we present the research progress of heteroatom-doped carbon-based materials for lithium and sodium ion batteries, including N, S, B, P, I, Br, Cl, and F doping/co-doping. The typical synthesis methods, characterization techniques, and electrochemical behaviors of heteroatom-doped carbon-based materials are summarized and clarified. In addition, the importance of heteroatom doping as well as the synergistic effects of co-doping in carbon-based materials is primary emphasized for lithium and sodium storage.