已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[The progress on survival prediction model of gallbladder carcinoma].

医学 列线图 预测模型 胆囊 比例危险模型 胆囊癌 生存分析 肿瘤科 恶性肿瘤 阶段(地层学) 内科学 总体生存率 生物 古生物学
作者
Zhimin Geng,Q Li,Z Zhang,Bambang Budi Siswanto,Zhiqiang Cai,Yaling Zhao,Zhaohui Tang
出处
期刊:PubMed 卷期号:58 (8): 649-652 被引量:1
标识
DOI:10.3760/cma.j.cn112139-20200116-00032
摘要

Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, radical resection is the only effective treatment for GBC at present. However, the postoperative effect is still poor. Therefore, identifying the key prognostic factors and establishing an individual and accurate survival prediction model for GBC are critical to prognosis assessment, treatment options and clinical decision support in patients with GBC. The prediction value of current commonly used TNM staging system is limited. Cox regression model is the most commonly used classical survival analysis method, but it is difficult to establish the association between prognostic variables. Nomogram and machine learning techniques including Bayesian network have been used to establish survival prediction model of GBC in recent years, which representing a certain degree of advancement, however, the model precision and clinical application still need to be further verified. The establishment of more accurate survival prediction models for GBC based on machine learning algorithm from Chinese multicenter large sample database to guide the clinical decision-making is the main research direction in the future.胆囊癌是胆道系统最常见的恶性肿瘤,根治性手术切除是目前胆囊癌唯一有效的治疗手段,但效果欠佳。识别胆囊癌患者的关键预后因素,建立一种个体化、准确的生存预测模型,对于胆囊癌患者预后评估、治疗方案选择及临床决策支持具有重要的指导意义。目前常用的肿瘤TNM分期预测价值有限;Cox回归模型是最常用、最经典的生存分析方法,但难以建立预后变量之间的关联关系。列线图及贝叶斯网络等机器学习方法近年来逐渐用于建立胆囊癌的生存预测模型,显示出了一定先进性,但模型的精确度及临床应用仍需要进一步验证。建立我国胆囊癌多中心大样本数据库,基于机器学习算法建立更精准的生存预测模型以指导胆囊癌临床决策是今后研究的主要方向。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
yuan关注了科研通微信公众号
9秒前
隐形曼青应助hhllhh采纳,获得10
12秒前
所所应助Ray采纳,获得10
14秒前
PMoLGGYM2021发布了新的文献求助10
15秒前
调皮醉波完成签到 ,获得积分10
19秒前
章鱼哥想毕业完成签到 ,获得积分10
20秒前
月儿完成签到 ,获得积分10
22秒前
Karen331完成签到,获得积分10
22秒前
butaishao完成签到,获得积分10
23秒前
看不了一点文献应助lzm采纳,获得20
23秒前
橙子应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
24秒前
情怀应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
耶啵完成签到 ,获得积分10
24秒前
28秒前
29秒前
朱朱朱完成签到,获得积分10
29秒前
yuan发布了新的文献求助10
31秒前
光之战士完成签到 ,获得积分10
32秒前
mw发布了新的文献求助10
34秒前
111完成签到 ,获得积分10
37秒前
44秒前
44秒前
47秒前
Amy完成签到 ,获得积分10
47秒前
Jing完成签到 ,获得积分20
50秒前
Ava应助HuiHui采纳,获得10
50秒前
称心的思卉完成签到,获得积分10
52秒前
wanci应助tangyuanliang采纳,获得10
53秒前
54秒前
HBY完成签到,获得积分10
56秒前
Steven发布了新的文献求助10
59秒前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989868
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255752
捐赠科研通 3270793
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882215
科研通“疑难数据库(出版商)”最低求助积分说明 809208