清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[The progress on survival prediction model of gallbladder carcinoma].

医学 列线图 预测模型 胆囊 比例危险模型 胆囊癌 生存分析 肿瘤科 恶性肿瘤 阶段(地层学) 内科学 总体生存率 生物 古生物学
作者
Zhimin Geng,Q Li,Z Zhang,Bambang Budi Siswanto,Zhiqiang Cai,Yaling Zhao,Zhaohui Tang
出处
期刊:PubMed 卷期号:58 (8): 649-652 被引量:1
标识
DOI:10.3760/cma.j.cn112139-20200116-00032
摘要

Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, radical resection is the only effective treatment for GBC at present. However, the postoperative effect is still poor. Therefore, identifying the key prognostic factors and establishing an individual and accurate survival prediction model for GBC are critical to prognosis assessment, treatment options and clinical decision support in patients with GBC. The prediction value of current commonly used TNM staging system is limited. Cox regression model is the most commonly used classical survival analysis method, but it is difficult to establish the association between prognostic variables. Nomogram and machine learning techniques including Bayesian network have been used to establish survival prediction model of GBC in recent years, which representing a certain degree of advancement, however, the model precision and clinical application still need to be further verified. The establishment of more accurate survival prediction models for GBC based on machine learning algorithm from Chinese multicenter large sample database to guide the clinical decision-making is the main research direction in the future.胆囊癌是胆道系统最常见的恶性肿瘤,根治性手术切除是目前胆囊癌唯一有效的治疗手段,但效果欠佳。识别胆囊癌患者的关键预后因素,建立一种个体化、准确的生存预测模型,对于胆囊癌患者预后评估、治疗方案选择及临床决策支持具有重要的指导意义。目前常用的肿瘤TNM分期预测价值有限;Cox回归模型是最常用、最经典的生存分析方法,但难以建立预后变量之间的关联关系。列线图及贝叶斯网络等机器学习方法近年来逐渐用于建立胆囊癌的生存预测模型,显示出了一定先进性,但模型的精确度及临床应用仍需要进一步验证。建立我国胆囊癌多中心大样本数据库,基于机器学习算法建立更精准的生存预测模型以指导胆囊癌临床决策是今后研究的主要方向。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夜临完成签到,获得积分0
4秒前
跳跃的鹏飞完成签到 ,获得积分0
10秒前
海英完成签到,获得积分10
15秒前
luobote完成签到 ,获得积分10
22秒前
吕佳完成签到 ,获得积分10
23秒前
限量版小祸害完成签到 ,获得积分10
26秒前
qiqi完成签到,获得积分10
28秒前
29秒前
我是老大应助Joy采纳,获得10
33秒前
qiqiqiqiqi完成签到 ,获得积分10
33秒前
Singularity完成签到,获得积分0
34秒前
早睡早起身体好Q完成签到 ,获得积分10
49秒前
沉静香氛完成签到 ,获得积分10
50秒前
naczx完成签到,获得积分0
53秒前
李志全完成签到 ,获得积分10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
xgx984完成签到,获得积分10
57秒前
共享精神应助keke采纳,获得10
1分钟前
Nene完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
大模型应助Zhuyin采纳,获得10
1分钟前
1分钟前
MoodMeed完成签到,获得积分10
1分钟前
1分钟前
Joy发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
1分钟前
mengqing发布了新的文献求助10
1分钟前
1分钟前
coding完成签到,获得积分10
1分钟前
Lucas应助积极香菜采纳,获得10
1分钟前
玺青一生完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
呼延坤完成签到 ,获得积分10
2分钟前
阿泽发布了新的文献求助10
2分钟前
非我完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310