脆弱类杆菌
生物膜
腐殖质
微生物学
抗生素
流出
抗菌活性
生物
多重耐药
抗药性
最小抑制浓度
化学
细菌
食品科学
生物化学
精油
遗传学
作者
Hye-In Jang,Ki‐Jong Rhee,Yong‐Bin Eom
出处
期刊:Canadian Journal of Microbiology
[Canadian Science Publishing]
日期:2020-02-19
卷期号:66 (6): 389-399
被引量:54
标识
DOI:10.1139/cjm-2020-0004
摘要
The rapid increase in antibiotic resistance has prompted the discovery of drugs that reduce antibiotic resistance or new drugs that are an alternative to antibiotics. Plant extracts have health benefits and may also exhibit antibacterial and antibiofilm activities against pathogens. This study determined the antibacterial and antibiofilm effects of α-humulene extracted from plants against enterotoxigenic Bacteroides fragilis, which causes inflammatory bowel disease. The minimum inhibitory concentration and biofilm inhibitory concentration of α-humulene for B. fragilis were 2 μg/mL, and the biofilm eradication concentration was in the range of 8-32 μg/mL. The XTT reduction assay confirmed that the cellular metabolic activity in biofilm rarely occurred at the concentration of 8-16 μg/mL. In addition, biofilm inhibition by α-humulene was also detected via confocal laser scanning microcopy. Quantitative real-time polymerase chain reaction (qPCR) was also used to investigate the effect of α-humulene on the expression of resistance-nodulation-cell division type multidrug efflux pump genes (bmeB1 and bmeB3). According to the results of qPCR, α-humulene significantly reduced the expression of bmeB1 and bmeB3 genes. This study demonstrates the potential therapeutic application of α-humulene for inhibiting the growth of B. fragilis cells and biofilms, and it expands the knowledge about biofilm medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI