Evaluating the Performance of the Deep Active Imitation Learning Algorithm in the Dynamic Environment of FIFA Player Agents

计算机科学 模仿 人工智能 背景(考古学) 深度学习 机器学习 国家(计算机科学) 模式(计算机接口) 人机交互 算法 心理学 社会心理学 生物 古生物学
作者
Matheus Prado Prandini Faria,Rita Maria Silva Julia,Lídia Bononi Paiva Tomaz
标识
DOI:10.1109/icmla.2019.00043
摘要

Deep Learning is a state-of-the-art approach for machine learning using real-world or realist data. FIFA is a soccer simulation game that provides a very realistic environment, but which has been relatively poorly explored in the context of learned game-playing agents. This paper explores the Deep Active Imitation (DAI) learning strategy applied to a dynamic environment in FIFA game. DAI is a segment of Imitation Learning, which consists of a supervised Deep Learning training strategy where the agents learn by observing and replicating human experts' behavior. Noteworthy here is that such learning strategy has only been validated in static navigation scenarios in the sense that the environment is changed only through the actions of the agent. In this way, the main objective of the present work is to investigate the efficacy of DAI to cope with a dynamic FIFA scenario named confrontation mode. The agents were evaluated in terms of in-game score through tournaments against FIFA's engine. The results show that DAI performs well in the confrontation mode. Thus, this work indicates that such learning strategy can be used to solve complex problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
多和5的武器完成签到,获得积分10
3秒前
5秒前
乔心发布了新的文献求助10
8秒前
zho发布了新的文献求助10
9秒前
如梦中完成签到,获得积分10
10秒前
hay完成签到,获得积分10
12秒前
小马甲应助乔心采纳,获得10
14秒前
监督導部完成签到,获得积分10
15秒前
上章完成签到,获得积分10
15秒前
xj0806完成签到 ,获得积分10
20秒前
21秒前
21秒前
23秒前
lucky发布了新的文献求助30
24秒前
26秒前
ww完成签到,获得积分10
26秒前
28秒前
神光发布了新的文献求助10
31秒前
SciGPT应助秋海棠采纳,获得10
31秒前
zho发布了新的文献求助10
32秒前
赘婿应助景笑天采纳,获得10
38秒前
NexusExplorer应助网再快点采纳,获得10
42秒前
43秒前
棉花糖完成签到,获得积分20
45秒前
chiyu完成签到,获得积分10
45秒前
cdercder应助资白玉采纳,获得10
46秒前
blawxx完成签到,获得积分10
47秒前
48秒前
Narcissus完成签到,获得积分10
49秒前
kinzer发布了新的文献求助10
49秒前
50秒前
Yuan发布了新的文献求助10
50秒前
紫电青霜完成签到,获得积分10
52秒前
科研通AI2S应助积极的睫毛采纳,获得10
53秒前
ceeray23应助yan采纳,获得10
53秒前
54秒前
shepherd发布了新的文献求助60
56秒前
小巧的傲松完成签到,获得积分10
56秒前
网再快点发布了新的文献求助10
58秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762