CCANet: Class-Constraint Coarse-to-Fine Attentional Deep Network for Subdecimeter Aerial Image Semantic Segmentation

计算机科学 分割 人工智能 航空影像 背景(考古学) 卷积神经网络 模式识别(心理学) 深度学习 图像分割 班级(哲学) 遥感 特征(语言学) 计算机视觉 图像(数学) 地理 语言学 哲学 考古
作者
Guohui Deng,Zhaocong Wu,Chengjun Wang,Miaozhong Xu,Yanfei Zhong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:20
标识
DOI:10.1109/tgrs.2021.3055950
摘要

Semantic segmentation is important for the understanding of subdecimeter aerial images. In recent years, deep convolutional neural networks (DCNNs) have been used widely for semantic segmentation in the field of remote sensing. However, because of the highly complex subdecimeter resolution of aerial images, inseparability often occurs among some geographic entities of interest in the spectral domain. In addition, the semantic segmentation methods based on DCNNs mostly obtain context information using extra information within the added receptive field. However, the context information obtained this way is not explicit. We propose a novel class-constraint coarse-to-fine attentional (CCA) deep network, which enables the formation of class information constraints to obtain explicit long-range context information. Further, the performance of subdecimeter aerial image semantic segmentation can be improved, particularly for fine-structured geographic entities. Based on coarse-to-fine technology, we obtained a coarse segmentation result and constructed an image class feature library. We propose the use of the attention mechanism to obtain strong class-constrained features. Consequently, pixels of different geographic entities can adaptively match the corresponding categories in the class feature library. Additionally, we employed a novel loss function, CCA-loss to realize end-to-end training. The experimental results obtained using two popular open benchmarks, International Society for Photogrammetry and Remote Sensing (ISPRS) 2-D semantic labeling Vaihingen data set and Institute of Electrical and Electronics Engineers (IEEE) Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest Zeebrugge data set, validated the effectiveness and superiority of our proposed model. The proposed method achieved state-of-the-art performance on the IEEE GRSS Data Fusion Contest Zeebrugge data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann完成签到,获得积分10
1秒前
kaikai发布了新的文献求助10
2秒前
2秒前
炸鸡加热发布了新的文献求助10
3秒前
橙汁椰子汁完成签到,获得积分10
4秒前
wch666完成签到,获得积分10
6秒前
Singularity应助knn采纳,获得10
9秒前
科研通AI2S应助谷歌采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
12秒前
混沌完成签到,获得积分10
12秒前
打打应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
Cassie应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助好好学习采纳,获得10
15秒前
snail01完成签到,获得积分10
15秒前
16秒前
19秒前
19秒前
20秒前
小小铱完成签到,获得积分10
20秒前
来来完成签到,获得积分10
21秒前
不配.应助11632采纳,获得10
22秒前
顺利的飞荷完成签到,获得积分0
22秒前
简单的浩然完成签到,获得积分10
25秒前
29秒前
退役干饭王完成签到 ,获得积分20
33秒前
cheney完成签到,获得积分10
33秒前
西瓜完成签到 ,获得积分10
39秒前
Tuotuo完成签到 ,获得积分10
42秒前
李小汁完成签到,获得积分10
44秒前
神勇的长颈鹿完成签到 ,获得积分10
44秒前
开心发布了新的文献求助10
44秒前
张文博完成签到,获得积分10
46秒前
羊老三完成签到,获得积分10
47秒前
祥梦伊飞完成签到,获得积分20
48秒前
48秒前
小玉完成签到 ,获得积分10
49秒前
49秒前
刚刚好完成签到 ,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023