CCANet: Class-Constraint Coarse-to-Fine Attentional Deep Network for Subdecimeter Aerial Image Semantic Segmentation

计算机科学 分割 人工智能 航空影像 背景(考古学) 卷积神经网络 模式识别(心理学) 深度学习 图像分割 班级(哲学) 遥感 特征(语言学) 计算机视觉 图像(数学) 地理 语言学 哲学 考古
作者
Guohui Deng,Zhaocong Wu,Chengjun Wang,Miaozhong Xu,Yanfei Zhong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:20
标识
DOI:10.1109/tgrs.2021.3055950
摘要

Semantic segmentation is important for the understanding of subdecimeter aerial images. In recent years, deep convolutional neural networks (DCNNs) have been used widely for semantic segmentation in the field of remote sensing. However, because of the highly complex subdecimeter resolution of aerial images, inseparability often occurs among some geographic entities of interest in the spectral domain. In addition, the semantic segmentation methods based on DCNNs mostly obtain context information using extra information within the added receptive field. However, the context information obtained this way is not explicit. We propose a novel class-constraint coarse-to-fine attentional (CCA) deep network, which enables the formation of class information constraints to obtain explicit long-range context information. Further, the performance of subdecimeter aerial image semantic segmentation can be improved, particularly for fine-structured geographic entities. Based on coarse-to-fine technology, we obtained a coarse segmentation result and constructed an image class feature library. We propose the use of the attention mechanism to obtain strong class-constrained features. Consequently, pixels of different geographic entities can adaptively match the corresponding categories in the class feature library. Additionally, we employed a novel loss function, CCA-loss to realize end-to-end training. The experimental results obtained using two popular open benchmarks, International Society for Photogrammetry and Remote Sensing (ISPRS) 2-D semantic labeling Vaihingen data set and Institute of Electrical and Electronics Engineers (IEEE) Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest Zeebrugge data set, validated the effectiveness and superiority of our proposed model. The proposed method achieved state-of-the-art performance on the IEEE GRSS Data Fusion Contest Zeebrugge data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐晓啸发布了新的文献求助10
刚刚
在水一方应助DumBell采纳,获得10
刚刚
pbj发布了新的文献求助10
刚刚
Santiago完成签到,获得积分10
1秒前
天天快乐应助等待的依风采纳,获得10
1秒前
2秒前
2秒前
lsw发布了新的文献求助20
3秒前
1111发布了新的文献求助10
4秒前
4秒前
小杜发布了新的文献求助10
4秒前
4秒前
姚懿磊发布了新的文献求助10
5秒前
小二郎应助冰柠檬采纳,获得10
5秒前
所所应助冬不拉的红糖纸采纳,获得10
6秒前
6秒前
金金金完成签到,获得积分10
6秒前
6秒前
快乐滑板应助代码小白采纳,获得10
6秒前
7秒前
好好好发布了新的文献求助10
8秒前
科研小赵发布了新的文献求助10
8秒前
tong完成签到,获得积分10
9秒前
此间少年郎完成签到 ,获得积分10
9秒前
张皓123发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
judy发布了新的文献求助10
10秒前
传奇3应助起名字好难采纳,获得10
10秒前
想美事完成签到,获得积分20
10秒前
11秒前
小鹏哥完成签到,获得积分10
11秒前
roy_chiang完成签到,获得积分10
11秒前
Jasper应助pbj采纳,获得10
12秒前
英姑应助555采纳,获得10
12秒前
SYLH应助joinn采纳,获得30
13秒前
13秒前
14秒前
15秒前
xxx发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102