CCANet: Class-Constraint Coarse-to-Fine Attentional Deep Network for Subdecimeter Aerial Image Semantic Segmentation

计算机科学 分割 人工智能 航空影像 背景(考古学) 卷积神经网络 模式识别(心理学) 深度学习 图像分割 班级(哲学) 遥感 特征(语言学) 计算机视觉 图像(数学) 地理 语言学 哲学 考古
作者
Guohui Deng,Zhaocong Wu,Chengjun Wang,Miaozhong Xu,Yanfei Zhong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:20
标识
DOI:10.1109/tgrs.2021.3055950
摘要

Semantic segmentation is important for the understanding of subdecimeter aerial images. In recent years, deep convolutional neural networks (DCNNs) have been used widely for semantic segmentation in the field of remote sensing. However, because of the highly complex subdecimeter resolution of aerial images, inseparability often occurs among some geographic entities of interest in the spectral domain. In addition, the semantic segmentation methods based on DCNNs mostly obtain context information using extra information within the added receptive field. However, the context information obtained this way is not explicit. We propose a novel class-constraint coarse-to-fine attentional (CCA) deep network, which enables the formation of class information constraints to obtain explicit long-range context information. Further, the performance of subdecimeter aerial image semantic segmentation can be improved, particularly for fine-structured geographic entities. Based on coarse-to-fine technology, we obtained a coarse segmentation result and constructed an image class feature library. We propose the use of the attention mechanism to obtain strong class-constrained features. Consequently, pixels of different geographic entities can adaptively match the corresponding categories in the class feature library. Additionally, we employed a novel loss function, CCA-loss to realize end-to-end training. The experimental results obtained using two popular open benchmarks, International Society for Photogrammetry and Remote Sensing (ISPRS) 2-D semantic labeling Vaihingen data set and Institute of Electrical and Electronics Engineers (IEEE) Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest Zeebrugge data set, validated the effectiveness and superiority of our proposed model. The proposed method achieved state-of-the-art performance on the IEEE GRSS Data Fusion Contest Zeebrugge data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助yy采纳,获得10
2秒前
2秒前
koui完成签到 ,获得积分10
3秒前
xxxxxb完成签到,获得积分10
4秒前
Xiaoyan完成签到,获得积分10
5秒前
浮游应助山上桃花酿采纳,获得10
5秒前
昏睡的访冬完成签到 ,获得积分10
5秒前
6秒前
ljyyy发布了新的文献求助10
6秒前
6秒前
GG关注了科研通微信公众号
6秒前
红豆大王完成签到,获得积分10
6秒前
科研通AI6应助@Hi采纳,获得80
7秒前
MLT发布了新的文献求助10
9秒前
yy完成签到,获得积分20
9秒前
冰冰完成签到,获得积分20
11秒前
英俊的铭应助娄十三采纳,获得10
11秒前
11秒前
科研通AI2S应助CT采纳,获得10
11秒前
11秒前
cxf发布了新的文献求助10
12秒前
13秒前
yy发布了新的文献求助10
14秒前
lllroy完成签到,获得积分10
15秒前
slgzhangtao发布了新的文献求助10
15秒前
16秒前
16秒前
大大的寄吧完成签到,获得积分10
17秒前
17秒前
20秒前
New完成签到,获得积分10
20秒前
21秒前
老高完成签到,获得积分10
22秒前
22秒前
墨晔完成签到,获得积分10
23秒前
mly发布了新的文献求助10
24秒前
GG发布了新的文献求助10
25秒前
@Hi完成签到,获得积分10
25秒前
研友_VZG7GZ应助。。。采纳,获得10
25秒前
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188