Extremely randomized tree: a new machines learning method for predicting coagulant dosage in drinking water treatment plant

线性回归 均方误差 凝结 浊度 相关系数 决定系数 数学 统计 心理学 海洋学 精神科 地质学
作者
Salim Heddam
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 475-489 被引量:9
标识
DOI:10.1016/b978-0-12-820644-7.00013-x
摘要

Coagulation using metal salts such as aluminum sulfate and ferric sulfate is the most well-known method used during the coagulation–flocculation process and mainly adopted in the drinking water treatment plants worldwide. The most method for determining the optimal coagulant dosage is the jar test, but this is clearly laborious and time-consuming task. Widely used regression models such as multiple linear regression (MLR) are unable to provide a high linking between water quality variables and the optimal coagulant dosage, due to the high nonlinearity and the multiple factors affecting the coagulation process. In this chapter, we propose a new robust method for predicting coagulant dosage using machine learning approaches. We proposed and compared two methods, namely, extremely randomized tree (ERT) and random forest (RF) models. To demonstrate the usefulness and robustness of the proposed models, a result using the MLR models was also provided for further comparison. The models were developed using several water quality variables selected as input of the models, namely, turbidity, pH, dissolved oxygen, electrical conductivity, and the water temperature. The accuracy of the models was evaluated using coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-mean-square error, and mean absolute error. According to the obtained results, the ERT approach was robust across methods tested. Both ERT and RF provided high accuracy during the training and validation phases; however, standard MLR model showed a lowest accuracy both in training and validation phases and the coagulant dosage was often incorrectly predicted. During the validation phase, the R and NSE values of the ERT model were the greatest with values equal to 0.899 and 0.790, respectively, greater than the values provided by the RF model (R=0.851, NSE=0.708), and significantly higher than the values provided by the MLR model, indicating that the ERT was the best and supporting the use of this model for predicting coagulant dosage in drinking water treatment plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助大可采纳,获得10
1秒前
坦率的世开完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
乐乐应助邢大宝采纳,获得10
2秒前
壮观的擎发布了新的文献求助10
2秒前
Jasper应助erhao采纳,获得10
3秒前
善学以致用应助冷酷莫言采纳,获得10
3秒前
3秒前
情怀应助精明的墨镜采纳,获得10
3秒前
honger完成签到,获得积分10
4秒前
无与伦比完成签到,获得积分10
4秒前
Lynn发布了新的文献求助10
4秒前
jluzz完成签到,获得积分10
5秒前
yourself发布了新的文献求助10
5秒前
Biyanchao发布了新的文献求助10
5秒前
5秒前
5秒前
椰子发布了新的文献求助10
5秒前
bkagyin应助chen采纳,获得10
5秒前
YTTT完成签到,获得积分10
5秒前
6秒前
贝肯尼发布了新的文献求助10
6秒前
刘齐完成签到,获得积分10
6秒前
6秒前
TPZJS完成签到,获得积分10
6秒前
麦满分发布了新的文献求助10
6秒前
汉堡包应助肖圣凯采纳,获得10
7秒前
所所应助二二春采纳,获得10
8秒前
成就的飞柏完成签到 ,获得积分10
8秒前
zero完成签到,获得积分10
8秒前
共享精神应助仙林AK47采纳,获得10
8秒前
wuyan发布了新的文献求助10
8秒前
愉快的新波完成签到,获得积分10
9秒前
9秒前
11发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798