Extremely randomized tree: a new machines learning method for predicting coagulant dosage in drinking water treatment plant

线性回归 均方误差 凝结 浊度 相关系数 决定系数 数学 统计 心理学 海洋学 精神科 地质学
作者
Salim Heddam
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 475-489 被引量:9
标识
DOI:10.1016/b978-0-12-820644-7.00013-x
摘要

Coagulation using metal salts such as aluminum sulfate and ferric sulfate is the most well-known method used during the coagulation–flocculation process and mainly adopted in the drinking water treatment plants worldwide. The most method for determining the optimal coagulant dosage is the jar test, but this is clearly laborious and time-consuming task. Widely used regression models such as multiple linear regression (MLR) are unable to provide a high linking between water quality variables and the optimal coagulant dosage, due to the high nonlinearity and the multiple factors affecting the coagulation process. In this chapter, we propose a new robust method for predicting coagulant dosage using machine learning approaches. We proposed and compared two methods, namely, extremely randomized tree (ERT) and random forest (RF) models. To demonstrate the usefulness and robustness of the proposed models, a result using the MLR models was also provided for further comparison. The models were developed using several water quality variables selected as input of the models, namely, turbidity, pH, dissolved oxygen, electrical conductivity, and the water temperature. The accuracy of the models was evaluated using coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-mean-square error, and mean absolute error. According to the obtained results, the ERT approach was robust across methods tested. Both ERT and RF provided high accuracy during the training and validation phases; however, standard MLR model showed a lowest accuracy both in training and validation phases and the coagulant dosage was often incorrectly predicted. During the validation phase, the R and NSE values of the ERT model were the greatest with values equal to 0.899 and 0.790, respectively, greater than the values provided by the RF model (R=0.851, NSE=0.708), and significantly higher than the values provided by the MLR model, indicating that the ERT was the best and supporting the use of this model for predicting coagulant dosage in drinking water treatment plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
小二郎应助科研通管家采纳,获得30
刚刚
ding应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
1秒前
IBMffff应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
3秒前
4秒前
秋半梦应助lxcy0612采纳,获得10
5秒前
6秒前
嘻鱼徐发布了新的文献求助10
7秒前
单薄的映之关注了科研通微信公众号
8秒前
9秒前
李爱国应助zhaozhuangming采纳,获得10
9秒前
科研通AI2S应助qujue001采纳,获得10
10秒前
gggghhhh发布了新的文献求助10
10秒前
斯文败类应助wwwww采纳,获得10
11秒前
混子发布了新的文献求助10
11秒前
科研通AI2S应助卡戎529采纳,获得10
11秒前
刘可可可发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助byecslx采纳,获得10
15秒前
韩涵发布了新的文献求助20
15秒前
16秒前
Jasper应助weirdo采纳,获得10
17秒前
17秒前
18秒前
木头人应助yongziwu采纳,获得50
18秒前
18秒前
秀丽海豚完成签到,获得积分10
20秒前
20秒前
小王完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079