已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extremely randomized tree: a new machines learning method for predicting coagulant dosage in drinking water treatment plant

线性回归 均方误差 凝结 浊度 相关系数 决定系数 数学 统计 心理学 海洋学 精神科 地质学
作者
Salim Heddam
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 475-489 被引量:9
标识
DOI:10.1016/b978-0-12-820644-7.00013-x
摘要

Coagulation using metal salts such as aluminum sulfate and ferric sulfate is the most well-known method used during the coagulation–flocculation process and mainly adopted in the drinking water treatment plants worldwide. The most method for determining the optimal coagulant dosage is the jar test, but this is clearly laborious and time-consuming task. Widely used regression models such as multiple linear regression (MLR) are unable to provide a high linking between water quality variables and the optimal coagulant dosage, due to the high nonlinearity and the multiple factors affecting the coagulation process. In this chapter, we propose a new robust method for predicting coagulant dosage using machine learning approaches. We proposed and compared two methods, namely, extremely randomized tree (ERT) and random forest (RF) models. To demonstrate the usefulness and robustness of the proposed models, a result using the MLR models was also provided for further comparison. The models were developed using several water quality variables selected as input of the models, namely, turbidity, pH, dissolved oxygen, electrical conductivity, and the water temperature. The accuracy of the models was evaluated using coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-mean-square error, and mean absolute error. According to the obtained results, the ERT approach was robust across methods tested. Both ERT and RF provided high accuracy during the training and validation phases; however, standard MLR model showed a lowest accuracy both in training and validation phases and the coagulant dosage was often incorrectly predicted. During the validation phase, the R and NSE values of the ERT model were the greatest with values equal to 0.899 and 0.790, respectively, greater than the values provided by the RF model (R=0.851, NSE=0.708), and significantly higher than the values provided by the MLR model, indicating that the ERT was the best and supporting the use of this model for predicting coagulant dosage in drinking water treatment plant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smh完成签到 ,获得积分10
1秒前
学不完了完成签到 ,获得积分10
1秒前
5秒前
5秒前
维克托发布了新的文献求助10
7秒前
guan完成签到,获得积分10
8秒前
万能图书馆应助WuCola采纳,获得10
9秒前
Calvin完成签到,获得积分20
9秒前
ybk666完成签到,获得积分10
10秒前
哈哈发布了新的文献求助10
10秒前
pojian完成签到,获得积分10
12秒前
wzzz完成签到,获得积分10
13秒前
派大星完成签到 ,获得积分10
17秒前
liwhao完成签到,获得积分10
17秒前
18秒前
一见憘完成签到 ,获得积分10
19秒前
20秒前
杨秋月发布了新的文献求助10
25秒前
踏云完成签到 ,获得积分10
26秒前
棠臻完成签到 ,获得积分10
29秒前
29秒前
29秒前
Moonpie应助科研通管家采纳,获得10
30秒前
Moonpie应助科研通管家采纳,获得10
30秒前
Moonpie应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
Moonpie应助科研通管家采纳,获得10
30秒前
CAOHOU应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
Moonpie应助科研通管家采纳,获得10
30秒前
Moonpie应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
沉默皮卡丘完成签到 ,获得积分10
32秒前
科研通AI6.1应助维克托采纳,获得10
33秒前
科研通AI6.1应助Yilam采纳,获得10
35秒前
打打应助淡淡的面包采纳,获得10
35秒前
勤奋乐天完成签到,获得积分10
38秒前
39秒前
wonder123发布了新的文献求助10
44秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338