已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extremely randomized tree: a new machines learning method for predicting coagulant dosage in drinking water treatment plant

线性回归 均方误差 凝结 浊度 相关系数 决定系数 数学 统计 心理学 海洋学 精神科 地质学
作者
Salim Heddam
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 475-489 被引量:9
标识
DOI:10.1016/b978-0-12-820644-7.00013-x
摘要

Coagulation using metal salts such as aluminum sulfate and ferric sulfate is the most well-known method used during the coagulation–flocculation process and mainly adopted in the drinking water treatment plants worldwide. The most method for determining the optimal coagulant dosage is the jar test, but this is clearly laborious and time-consuming task. Widely used regression models such as multiple linear regression (MLR) are unable to provide a high linking between water quality variables and the optimal coagulant dosage, due to the high nonlinearity and the multiple factors affecting the coagulation process. In this chapter, we propose a new robust method for predicting coagulant dosage using machine learning approaches. We proposed and compared two methods, namely, extremely randomized tree (ERT) and random forest (RF) models. To demonstrate the usefulness and robustness of the proposed models, a result using the MLR models was also provided for further comparison. The models were developed using several water quality variables selected as input of the models, namely, turbidity, pH, dissolved oxygen, electrical conductivity, and the water temperature. The accuracy of the models was evaluated using coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-mean-square error, and mean absolute error. According to the obtained results, the ERT approach was robust across methods tested. Both ERT and RF provided high accuracy during the training and validation phases; however, standard MLR model showed a lowest accuracy both in training and validation phases and the coagulant dosage was often incorrectly predicted. During the validation phase, the R and NSE values of the ERT model were the greatest with values equal to 0.899 and 0.790, respectively, greater than the values provided by the RF model (R=0.851, NSE=0.708), and significantly higher than the values provided by the MLR model, indicating that the ERT was the best and supporting the use of this model for predicting coagulant dosage in drinking water treatment plant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助廖智勇采纳,获得10
1秒前
3秒前
check003完成签到,获得积分10
3秒前
在水一方应助秋秋采纳,获得10
5秒前
6秒前
6秒前
lily完成签到,获得积分10
9秒前
NexusExplorer应助细腻的冷卉采纳,获得10
12秒前
12秒前
清秀的碧彤完成签到,获得积分10
13秒前
13秒前
Twonej应助火星上向珊采纳,获得30
15秒前
LinglongCai完成签到 ,获得积分10
16秒前
啊哈哈哈完成签到 ,获得积分10
16秒前
抚琴祛魅完成签到 ,获得积分10
16秒前
红油曲奇发布了新的文献求助10
17秒前
qinghuixinyi完成签到,获得积分20
17秒前
18秒前
18秒前
20秒前
曹雪峰发布了新的文献求助10
22秒前
25秒前
27秒前
陈鹿华完成签到 ,获得积分10
29秒前
曹雪峰完成签到,获得积分10
29秒前
29秒前
羊羊完成签到,获得积分10
30秒前
sanner发布了新的文献求助10
30秒前
拉长的迎曼完成签到 ,获得积分10
32秒前
劉浏琉完成签到,获得积分10
34秒前
jiang_tian完成签到,获得积分10
36秒前
思源应助好眠哈密瓜采纳,获得10
36秒前
Lagom完成签到,获得积分10
37秒前
阿俊完成签到 ,获得积分10
38秒前
JamesPei应助细腻的冷卉采纳,获得10
38秒前
40秒前
41秒前
lsc完成签到 ,获得积分10
43秒前
Rocsoar发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723263
求助须知:如何正确求助?哪些是违规求助? 5275470
关于积分的说明 15298353
捐赠科研通 4871863
什么是DOI,文献DOI怎么找? 2616280
邀请新用户注册赠送积分活动 1566091
关于科研通互助平台的介绍 1523007