Extremely randomized tree: a new machines learning method for predicting coagulant dosage in drinking water treatment plant

线性回归 均方误差 凝结 浊度 相关系数 决定系数 数学 统计 心理学 海洋学 精神科 地质学
作者
Salim Heddam
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 475-489 被引量:9
标识
DOI:10.1016/b978-0-12-820644-7.00013-x
摘要

Coagulation using metal salts such as aluminum sulfate and ferric sulfate is the most well-known method used during the coagulation–flocculation process and mainly adopted in the drinking water treatment plants worldwide. The most method for determining the optimal coagulant dosage is the jar test, but this is clearly laborious and time-consuming task. Widely used regression models such as multiple linear regression (MLR) are unable to provide a high linking between water quality variables and the optimal coagulant dosage, due to the high nonlinearity and the multiple factors affecting the coagulation process. In this chapter, we propose a new robust method for predicting coagulant dosage using machine learning approaches. We proposed and compared two methods, namely, extremely randomized tree (ERT) and random forest (RF) models. To demonstrate the usefulness and robustness of the proposed models, a result using the MLR models was also provided for further comparison. The models were developed using several water quality variables selected as input of the models, namely, turbidity, pH, dissolved oxygen, electrical conductivity, and the water temperature. The accuracy of the models was evaluated using coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-mean-square error, and mean absolute error. According to the obtained results, the ERT approach was robust across methods tested. Both ERT and RF provided high accuracy during the training and validation phases; however, standard MLR model showed a lowest accuracy both in training and validation phases and the coagulant dosage was often incorrectly predicted. During the validation phase, the R and NSE values of the ERT model were the greatest with values equal to 0.899 and 0.790, respectively, greater than the values provided by the RF model (R=0.851, NSE=0.708), and significantly higher than the values provided by the MLR model, indicating that the ERT was the best and supporting the use of this model for predicting coagulant dosage in drinking water treatment plant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王J发布了新的文献求助10
1秒前
Ava应助阿松大采纳,获得10
1秒前
可靠花生完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
zcx发布了新的文献求助10
3秒前
3秒前
如意代双完成签到 ,获得积分10
4秒前
向乌萨奇学习完成签到,获得积分10
4秒前
JJL发布了新的文献求助10
4秒前
漂亮的雪糕完成签到,获得积分10
5秒前
BIRDY完成签到,获得积分10
5秒前
5秒前
5秒前
xiongyh10完成签到,获得积分10
5秒前
香蕉觅云应助yilin采纳,获得10
6秒前
完美世界应助奔跑西木采纳,获得10
6秒前
lily发布了新的文献求助10
6秒前
lzf发布了新的文献求助10
6秒前
7秒前
斯文的人英完成签到,获得积分10
7秒前
8秒前
8秒前
蓝天发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI2S应助hky采纳,获得10
9秒前
星辰大海应助king采纳,获得10
11秒前
ZZG应助陌路孤星采纳,获得10
12秒前
murrayss发布了新的文献求助10
12秒前
waerteyang完成签到,获得积分10
13秒前
我叫杨二虎完成签到,获得积分10
13秒前
13秒前
Akim应助小启采纳,获得10
13秒前
阿松大发布了新的文献求助10
13秒前
wanci应助耍酷的友卉采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
谦让元槐发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759448
求助须知:如何正确求助?哪些是违规求助? 5520206
关于积分的说明 15394058
捐赠科研通 4896538
什么是DOI,文献DOI怎么找? 2633747
邀请新用户注册赠送积分活动 1581851
关于科研通互助平台的介绍 1537271