Extremely randomized tree: a new machines learning method for predicting coagulant dosage in drinking water treatment plant

线性回归 均方误差 凝结 浊度 相关系数 决定系数 数学 统计 心理学 海洋学 精神科 地质学
作者
Salim Heddam
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 475-489 被引量:9
标识
DOI:10.1016/b978-0-12-820644-7.00013-x
摘要

Coagulation using metal salts such as aluminum sulfate and ferric sulfate is the most well-known method used during the coagulation–flocculation process and mainly adopted in the drinking water treatment plants worldwide. The most method for determining the optimal coagulant dosage is the jar test, but this is clearly laborious and time-consuming task. Widely used regression models such as multiple linear regression (MLR) are unable to provide a high linking between water quality variables and the optimal coagulant dosage, due to the high nonlinearity and the multiple factors affecting the coagulation process. In this chapter, we propose a new robust method for predicting coagulant dosage using machine learning approaches. We proposed and compared two methods, namely, extremely randomized tree (ERT) and random forest (RF) models. To demonstrate the usefulness and robustness of the proposed models, a result using the MLR models was also provided for further comparison. The models were developed using several water quality variables selected as input of the models, namely, turbidity, pH, dissolved oxygen, electrical conductivity, and the water temperature. The accuracy of the models was evaluated using coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-mean-square error, and mean absolute error. According to the obtained results, the ERT approach was robust across methods tested. Both ERT and RF provided high accuracy during the training and validation phases; however, standard MLR model showed a lowest accuracy both in training and validation phases and the coagulant dosage was often incorrectly predicted. During the validation phase, the R and NSE values of the ERT model were the greatest with values equal to 0.899 and 0.790, respectively, greater than the values provided by the RF model (R=0.851, NSE=0.708), and significantly higher than the values provided by the MLR model, indicating that the ERT was the best and supporting the use of this model for predicting coagulant dosage in drinking water treatment plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好学发布了新的文献求助10
刚刚
刚刚
能干的人发布了新的文献求助50
1秒前
马鸣笳发布了新的文献求助10
2秒前
2秒前
aaa完成签到,获得积分10
2秒前
3秒前
隐形曼青应助Kidmuse采纳,获得10
3秒前
丘比特应助yuwenxin采纳,获得10
3秒前
宋相甫发布了新的文献求助10
3秒前
4秒前
wanci应助烧鸭饭采纳,获得10
4秒前
光吃不胖完成签到,获得积分10
4秒前
SciGPT应助liwei采纳,获得10
4秒前
如意修洁发布了新的文献求助10
5秒前
Ccc发布了新的文献求助10
6秒前
春夏应助小小苏荷采纳,获得20
6秒前
皮卡丘比特应助小小苏荷采纳,获得20
6秒前
李健的粉丝团团长应助666采纳,获得10
6秒前
5小0完成签到,获得积分20
7秒前
拼搏的奄发布了新的文献求助10
8秒前
Akim应助youyuer采纳,获得10
9秒前
9秒前
10秒前
打打应助kyJYbs采纳,获得10
11秒前
grmqgq发布了新的文献求助10
11秒前
淡定的彩虹完成签到,获得积分10
11秒前
李爱国应助呆萌的傲旋采纳,获得10
12秒前
三家村猛虎完成签到 ,获得积分10
12秒前
独特浩然发布了新的文献求助20
12秒前
迟迟完成签到,获得积分10
13秒前
李健应助十一采纳,获得10
13秒前
Orange应助十一采纳,获得10
13秒前
顾矜应助十一采纳,获得10
13秒前
万能图书馆应助十一采纳,获得10
13秒前
科研通AI6应助十一采纳,获得10
13秒前
Orange应助十一采纳,获得10
13秒前
情怀应助十一采纳,获得10
13秒前
烟花应助无奈狗采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764