Influence of Geometry on Thin Layer and Diffusion Processes at Carbon Electrodes

电极 扩散 循环伏安法 薄膜 扩散层 材料科学 碳纳米管 图层(电子) 电化学 分析化学(期刊) 化学 纳米技术 物理化学 有机化学 热力学 物理
作者
Qun Cao,Zijun Shao,Dale K. Hensley,Nickolay V. Lavrik,B. Jill Venton
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (8): 2667-2676 被引量:41
标识
DOI:10.1021/acs.langmuir.0c03315
摘要

The geometric structure of carbon electrodes affects their electrochemical behavior, and large-scale surface roughness leads to thin layer electrochemistry when analyte is trapped in pores. However, the current response is always a mixture of both thin layer and diffusion processes. Here, we systematically explore the effects of thin layer electrochemistry and diffusion at carbon fiber (CF), carbon nanospike (CNS), and carbon nanotube yarn (CNTY) electrodes. The cyclic voltammetry (CV) response to the surface-insensitive redox couple Ru(NH3)63+/2+ is tested, so the geometric structure is the only factor. At CFs, the reaction is diffusion-controlled because the surface is smooth. CNTY electrodes have gaps between nanotubes that are about 10 μm deep, comparable with the diffusion layer thickness. CNTY electrodes show clear thin layer behavior due to trapping effects, with more symmetrical peaks and ΔEp closer to zero. CNS electrodes have submicrometer scale roughness, so their CV shape is mostly due to diffusion, not thin layer effects. However, even the 10% contribution of thin layer behavior reduces the peak separation by 30 mV, indicating ΔEp is influenced not only by electron transfer kinetics but also by surface geometry. A new simulation model is developed to quantitate the thin layer and diffusion contributions that explains the CV shape and peak separation for CNS and CNTY electrodes, providing insight on the impact of scan rate and surface structure size. Thus, this study provides key understanding of thin layer and diffusion processes at different surface structures and will enable rational design of electrodes with thin layer electrochemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
casey发布了新的文献求助10
3秒前
4秒前
5秒前
落后的冬寒完成签到,获得积分10
6秒前
Jia发布了新的文献求助30
7秒前
9秒前
ZHAOyifan发布了新的文献求助10
10秒前
zz完成签到 ,获得积分10
10秒前
林狗发布了新的文献求助10
10秒前
小魔笛完成签到,获得积分10
11秒前
Orange应助ys采纳,获得10
13秒前
cocolu应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
cocolu应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
15秒前
fiammazeng应助科研通管家采纳,获得20
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
杳鸢应助科研通管家采纳,获得50
15秒前
尹静涵完成签到 ,获得积分10
15秒前
丘比特应助陈某某采纳,获得10
16秒前
小魔笛发布了新的文献求助10
19秒前
淡淡的飞雪应助皮灵犀采纳,获得10
21秒前
11完成签到 ,获得积分10
23秒前
25秒前
kk完成签到,获得积分10
26秒前
26秒前
z3Q应助电磁波采纳,获得10
28秒前
31秒前
31秒前
飘逸初夏发布了新的文献求助10
34秒前
2ilo_应助俗丨采纳,获得10
35秒前
jucy完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
第四次气候变化国家评估报告 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306108
求助须知:如何正确求助?哪些是违规求助? 2939911
关于积分的说明 8494977
捐赠科研通 2614242
什么是DOI,文献DOI怎么找? 1428001
科研通“疑难数据库(出版商)”最低求助积分说明 663219
邀请新用户注册赠送积分活动 648037