Influence of Geometry on Thin Layer and Diffusion Processes at Carbon Electrodes

电极 扩散 循环伏安法 薄膜 扩散层 材料科学 碳纳米管 图层(电子) 电化学 分析化学(期刊) 化学 纳米技术 物理化学 有机化学 热力学 物理
作者
Qun Cao,Zijun Shao,Dale K. Hensley,Nickolay V. Lavrik,B. Jill Venton
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (8): 2667-2676 被引量:41
标识
DOI:10.1021/acs.langmuir.0c03315
摘要

The geometric structure of carbon electrodes affects their electrochemical behavior, and large-scale surface roughness leads to thin layer electrochemistry when analyte is trapped in pores. However, the current response is always a mixture of both thin layer and diffusion processes. Here, we systematically explore the effects of thin layer electrochemistry and diffusion at carbon fiber (CF), carbon nanospike (CNS), and carbon nanotube yarn (CNTY) electrodes. The cyclic voltammetry (CV) response to the surface-insensitive redox couple Ru(NH3)63+/2+ is tested, so the geometric structure is the only factor. At CFs, the reaction is diffusion-controlled because the surface is smooth. CNTY electrodes have gaps between nanotubes that are about 10 μm deep, comparable with the diffusion layer thickness. CNTY electrodes show clear thin layer behavior due to trapping effects, with more symmetrical peaks and ΔEp closer to zero. CNS electrodes have submicrometer scale roughness, so their CV shape is mostly due to diffusion, not thin layer effects. However, even the 10% contribution of thin layer behavior reduces the peak separation by 30 mV, indicating ΔEp is influenced not only by electron transfer kinetics but also by surface geometry. A new simulation model is developed to quantitate the thin layer and diffusion contributions that explains the CV shape and peak separation for CNS and CNTY electrodes, providing insight on the impact of scan rate and surface structure size. Thus, this study provides key understanding of thin layer and diffusion processes at different surface structures and will enable rational design of electrodes with thin layer electrochemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助LLL采纳,获得10
刚刚
1秒前
677发布了新的文献求助20
2秒前
sy发布了新的文献求助10
2秒前
3秒前
ChaiHaobo发布了新的文献求助10
3秒前
糟糕的鞋垫完成签到 ,获得积分10
3秒前
酷炫大树发布了新的文献求助10
3秒前
婧婧完成签到 ,获得积分10
6秒前
tanyunjuan发布了新的文献求助10
6秒前
7秒前
久而久之发布了新的文献求助10
8秒前
刘恒波完成签到,获得积分20
9秒前
LIAN完成签到,获得积分20
10秒前
10秒前
科研通AI6应助于鱼余采纳,获得10
10秒前
啦啦啦啦完成签到,获得积分20
10秒前
健壮安柏完成签到 ,获得积分10
12秒前
13秒前
思源应助赵浩楠采纳,获得10
13秒前
15秒前
调皮醉波发布了新的文献求助10
15秒前
15秒前
ycxlb完成签到 ,获得积分10
16秒前
16秒前
久而久之完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
笨笨罡完成签到,获得积分10
17秒前
April应助非而者厚采纳,获得10
17秒前
郑郑发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
大模型应助Brave采纳,获得10
20秒前
blusky完成签到,获得积分10
20秒前
zou发布了新的文献求助10
20秒前
哈哈哈完成签到,获得积分10
20秒前
吴华余发布了新的文献求助10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091