Fast Multi-View Outlier Detection via Deep Encoder

计算机科学 判别式 离群值 异常检测 子空间拓扑 自编码 人工智能 成对比较 模式识别(心理学) 数据挖掘 代表(政治) 深度学习 机器学习 政治学 政治 法学
作者
Dongdong Hou,Yang Cong,Gan Sun,Jiahua Dong,Jun Li,Kai Li
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:8 (4): 1047-1058 被引量:8
标识
DOI:10.1109/tbdata.2020.3004057
摘要

Multi-view outlier detection has a wide range of applications and has been well investigated in recent years. However, 1) most existing state-of-the-art methods cannot efficiently handle outlier detection problem for large-scale multi-view data, since exploring pairwise constraints among different views causes highly-computational cost; 2) the data collected from original heterogeneous feature spaces further increases the consistent difficulty of multi-view outlier detection. To address these issues, we present a fast multi-view outlier detection model via learning a low-rank latent subspace representation with deep encoder architecture, which can not only efficiently identify the outliers for large-scale data even with numerous data views, but also exploit a discriminative common latent subspace shared by all the views. First, we learn a set of orthogonal bases as view-specific dictionaries from a small dataset, which is randomly sampled from the original dataset. Benefitting from view-specific dictionaries, the sampled data is projected and decomposed as a shared and discriminative latent subspace representations, which correspond to the view-consistent and view-specific components across multiple views, respectively. Then, the obtained discriminative latent representations are applied to train the view-specific deep encoders, which can efficiently compute the abnormal score for the remaining instances. Our proposed model can cost-effectively identify the outliers in large-scale datasets from numerous data views with less computational complexity. Experiments conducted on eight real datasets and a synthesis dataset show that our proposed model outperforms the existing ones on effectiveness and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Smiling应助元谷雪采纳,获得10
刚刚
Ya发布了新的文献求助10
刚刚
张小仙发布了新的文献求助10
1秒前
2秒前
willa完成签到,获得积分10
2秒前
you发布了新的文献求助10
2秒前
2秒前
典雅碧空发布了新的文献求助10
3秒前
czh应助落寞依玉采纳,获得10
3秒前
3秒前
球球了发布了新的文献求助10
4秒前
4秒前
5秒前
178181发布了新的文献求助10
5秒前
wiwi发布了新的文献求助30
5秒前
5秒前
酷波er应助天真的宝马采纳,获得10
6秒前
无限小珍完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
LY发布了新的文献求助10
8秒前
GUAN发布了新的文献求助10
8秒前
12214完成签到,获得积分10
8秒前
8秒前
天天快乐应助大马猴采纳,获得10
8秒前
教授王发布了新的文献求助200
8秒前
9秒前
9秒前
9秒前
9秒前
安清发布了新的文献求助30
9秒前
yygz0703发布了新的文献求助10
10秒前
坦率的匪应助弗兰奇将军采纳,获得10
10秒前
11秒前
赘婿应助smin采纳,获得10
11秒前
11秒前
easy发布了新的文献求助10
11秒前
11秒前
czh给一口蛋黄苏的求助进行了留言
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113