A bi‐level programming framework for identifying optimal parameters in portfolio selection

文件夹 数学优化 计算机科学 基数(数据建模) 夏普比率 投资组合优化 预期收益 选择(遗传算法) 数学 数据挖掘 机器学习 经济 金融经济学
作者
Kui Jing,Fengmin Xu,Xuepeng Li
出处
期刊:International Transactions in Operational Research [Wiley]
卷期号:29 (1): 87-112 被引量:6
标识
DOI:10.1111/itor.12856
摘要

Abstract This paper addresses the problem of identifying optimal portfolio parameters in nonsparse and sparse models. Generally, using the sample estimates to construct a mean–variance portfolio often leads to undesirable portfolio performance. We propose a novel bi‐level programming framework to identify the optimal values of expected return and cardinality, which can be estimated separately or simultaneously. In the general formulation of our approach, outer‐level is designed to maximize the utility of the portfolio, which is measured by Sharpe ratio, while the inner‐level is to minimize the risk of a portfolio under a given expected return. Considering the nonconvex and nonsmooth characteristics of the outer‐level, we develop a hybrid derivative‐free optimization algorithm embedded with alternating direction method of multipliers to solve the problem. Numerical experiments are carried out based on both simulated and real‐life data. During the process, we give a prior range of cardinality using the data‐driven method to promote the efficiency. Estimating the parameters by our approach achieves better performance both in the stock and fund‐of‐funds markets. Moreover, we also demonstrate that our results are robust when the risk is measured by conditional value‐at‐risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助细辛采纳,获得10
1秒前
H2O关注了科研通微信公众号
1秒前
1秒前
lelelele完成签到,获得积分10
2秒前
ddd完成签到,获得积分10
2秒前
朴实的幻灵完成签到,获得积分10
2秒前
2秒前
小小完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
汉堡包应助klbzw03采纳,获得10
4秒前
4秒前
5秒前
5秒前
所所应助想放春假采纳,获得10
6秒前
6秒前
暮冬十三发布了新的文献求助10
6秒前
妡忆完成签到 ,获得积分10
7秒前
希望天下0贩的0应助yue采纳,获得10
7秒前
gjrktrtkghk完成签到,获得积分10
7秒前
秀莉发布了新的文献求助10
7秒前
guohuameike发布了新的文献求助10
8秒前
yycgodlike发布了新的文献求助10
8秒前
8秒前
lidd发布了新的文献求助10
8秒前
柏铸海完成签到,获得积分10
8秒前
SciGPT应助Dobrzs采纳,获得10
9秒前
无情的花卷完成签到,获得积分10
9秒前
10秒前
bkagyin应助潇潇鱼采纳,获得10
10秒前
斐嘿嘿发布了新的文献求助10
11秒前
呃呃呃发布了新的文献求助10
12秒前
无私的路人完成签到,获得积分20
13秒前
13秒前
细辛发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281