Multi-View Separable Pyramid Network for AD Prediction at MCI Stage by 18F-FDG Brain PET Imaging

正电子发射断层摄影术 阶段(地层学) 神经影像学 核医学 可分离空间 棱锥(几何) 人工智能 计算机科学 物理 医学影像学 医学 光学 心理学 神经科学 数学 地质学 数学分析 古生物学
作者
Xiaoxi Pan,Trong-Le Phan,Mouloud Adel,Caroline Fossati,Thierry Gaidon,Julien Wojak,Éric Guedj
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 81-92 被引量:72
标识
DOI:10.1109/tmi.2020.3022591
摘要

Alzheimer's Disease (AD), one of the main causes of death in elderly people, is characterized by Mild Cognitive Impairment (MCI) at prodromal stage. Nevertheless, only part of MCI subjects could progress to AD. The main objective of this paper is thus to identify those who will develop a dementia of AD type among MCI patients. 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) serves as a neuroimaging modality for early diagnosis as it can reflect neural activity via measuring glucose uptake at resting-state. In this paper, we design a deep network on 18F-FDG PET modality to address the problem of AD identification at early MCI stage. To this end, a Multi-view Separable Pyramid Network (MiSePyNet) is proposed, in which representations are learned from axial, coronal and sagittal views of PET scans so as to offer complementary information and then combined to make a decision jointly. Different from the widely and naturally used 3D convolution operations for 3D images, the proposed architecture is deployed with separable convolution from slice-wise to spatial-wise successively, which can retain the spatial information and reduce training parameters compared to 2D and 3D networks, respectively. Experiments on ADNI dataset show that the proposed method can yield better performance than both traditional and deep learning-based algorithms for predicting the progression of Mild Cognitive Impairment, with a classification accuracy of 83.05%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzhou发布了新的文献求助10
1秒前
1秒前
lize5493发布了新的文献求助10
1秒前
1秒前
xy完成签到 ,获得积分10
2秒前
4秒前
就好ih完成签到,获得积分10
4秒前
4秒前
妩媚的夏烟完成签到,获得积分10
5秒前
廷烨完成签到,获得积分10
6秒前
fay发布了新的文献求助30
7秒前
super完成签到,获得积分10
7秒前
7秒前
横空完成签到,获得积分10
8秒前
9秒前
快乐小白发布了新的文献求助10
9秒前
深情安青应助桔子采纳,获得10
10秒前
LL发布了新的文献求助10
13秒前
快乐小白完成签到,获得积分10
13秒前
灬卍冉发布了新的文献求助10
14秒前
领导范儿应助布鲁盖采纳,获得10
17秒前
18秒前
CipherSage应助Anliks采纳,获得10
18秒前
catherine完成签到,获得积分10
19秒前
栗子完成签到 ,获得积分10
21秒前
24秒前
黑美腻完成签到,获得积分10
27秒前
fay完成签到,获得积分10
28秒前
29秒前
布鲁盖发布了新的文献求助10
30秒前
不语完成签到 ,获得积分10
30秒前
夏天发布了新的文献求助30
32秒前
黑美腻发布了新的文献求助10
33秒前
34秒前
干净怀寒发布了新的文献求助10
38秒前
11完成签到 ,获得积分10
39秒前
40秒前
FashionBoy应助霸气的亿先采纳,获得10
40秒前
星辰大海应助17599839662采纳,获得10
40秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454234
求助须知:如何正确求助?哪些是违规求助? 3049491
关于积分的说明 9017440
捐赠科研通 2737973
什么是DOI,文献DOI怎么找? 1501853
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692893