清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An ensemble of deep neural networks for kidney ultrasound image classification

计算机科学 人工智能 模式识别(心理学) 散斑噪声 超声波 特征提取 图像质量 集成学习 肾脏疾病 斑点图案 放射科 图像(数学) 医学 内科学
作者
S Sudharson,Priyanka Kokil
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:197: 105709-105709 被引量:47
标识
DOI:10.1016/j.cmpb.2020.105709
摘要

Background and objective: Chronic kidney disease is a worldwide health issue which includes not only kidney failure but also complications of reduced kidney functionality. Cyst formation, nephrolithiasis or kidney stone, and renal cell carcinoma or kidney tumor are the common kidney disorders which affects the functionality of kidneys. These disorders are typically asymptomatic, therefore early and automatic diagnosis of kidney disorders are required to avoid serious complications. Methods: This paper proposes an automatic classification of B-mode kidney ultrasound images based on the ensemble of deep neural networks (DNNs) using transfer learning. The ultrasound images are usually affected by speckle noise and quality selection in the ultrasound image is based on perception-based image quality evaluator score. Three variant datasets are given to the pre-trained DNN models for feature extraction followed by support vector machine for classification. The ensembling of different pre-trained DNNs like ResNet-101, ShuffleNet, and MobileNet-v2 are combined and final predictions are done by using the majority voting technique. By combining the predictions from multiple DNNs the ensemble model shows better classification performance than the individual models. The presented method proved its superiority when compared to the conventional and DNN based classification methods. The developed ensemble model classifies the kidney ultrasound images into four classes, namely, normal, cyst, stone, and tumor. Results: To highlight effectiveness of the proposed approach, the ensemble based approach is compared with the existing state-of-the-art methods and tested in the variants of ultrasound images like in quality and noisy conditions. The presented method resulted in maximum classification accuracy of 96.54% in testing with quality images and 95.58% in testing with noisy images. The performance of the presented approach is evaluated based on accuracy, sensitivity, and selectivity. Conclusions: From the experimental analysis, it is clear that the ensemble of DNNs classifies the majority of images correctly and results in maximum classification accuracy as compared to the existing methods. This automatic classification approach is a supporting tool for the radiologists and nephrologists for precise diagnosis of kidney diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
Ji发布了新的文献求助10
19秒前
Ji完成签到,获得积分10
29秒前
56秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助ZXX采纳,获得10
1分钟前
1分钟前
1分钟前
ZXX发布了新的文献求助10
1分钟前
等待安莲关注了科研通微信公众号
1分钟前
1分钟前
2分钟前
等待安莲发布了新的文献求助30
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
SCI完成签到,获得积分10
3分钟前
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
百里幻竹发布了新的文献求助10
5分钟前
英姑应助百里幻竹采纳,获得10
6分钟前
6分钟前
6分钟前
朴素的山蝶完成签到 ,获得积分10
6分钟前
6分钟前
百里幻竹发布了新的文献求助10
6分钟前
毛毛完成签到,获得积分10
6分钟前
科研通AI2S应助百里幻竹采纳,获得10
6分钟前
6分钟前
123完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505243
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887