Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 复合材料 程序设计语言
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶糖完成签到,获得积分10
2秒前
丘比特应助浪迹天涯采纳,获得10
3秒前
5秒前
5秒前
虚幻白玉发布了新的文献求助10
6秒前
清客完成签到 ,获得积分10
6秒前
传奇3应助阳阳采纳,获得10
6秒前
8秒前
皮皮桂发布了新的文献求助10
8秒前
Hello应助无奈傲菡采纳,获得10
8秒前
故意的傲玉应助FENGHUI采纳,获得10
9秒前
10秒前
科研通AI5应助nextconnie采纳,获得10
11秒前
James完成签到,获得积分10
11秒前
12秒前
Lucas应助sun采纳,获得10
13秒前
KristenStewart完成签到,获得积分10
15秒前
过时的热狗完成签到,获得积分10
15秒前
点点完成签到,获得积分10
15秒前
Zxc发布了新的文献求助10
16秒前
涨芝士完成签到 ,获得积分10
17秒前
18秒前
无名欧文关注了科研通微信公众号
18秒前
科研123完成签到,获得积分10
20秒前
crescent完成签到 ,获得积分10
22秒前
无奈傲菡发布了新的文献求助10
22秒前
烟花应助123号采纳,获得10
25秒前
超帅的遥完成签到,获得积分10
25秒前
Zxc完成签到,获得积分10
26秒前
lbt完成签到 ,获得积分10
27秒前
yao完成签到 ,获得积分10
28秒前
28秒前
30秒前
31秒前
31秒前
doudou完成签到 ,获得积分10
31秒前
BCS完成签到,获得积分10
31秒前
领导范儿应助KYN采纳,获得10
31秒前
32秒前
独特的莫言完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849