Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS_关注了科研通微信公众号
刚刚
科研通AI6应助孙朱珠采纳,获得10
刚刚
萄葡完成签到 ,获得积分10
刚刚
1秒前
wjt发布了新的文献求助10
1秒前
2秒前
2秒前
芋头粽子完成签到,获得积分10
3秒前
万能图书馆应助kiwiii采纳,获得10
3秒前
个性湘发布了新的文献求助10
3秒前
老迟到的晓露完成签到,获得积分20
3秒前
3秒前
4秒前
Akim应助稳重盼夏采纳,获得10
4秒前
5秒前
ghkjl发布了新的文献求助20
6秒前
6秒前
wyz发布了新的文献求助10
6秒前
SJJ应助虹虹采纳,获得10
6秒前
7秒前
7秒前
7秒前
dgd应助懦弱的若血采纳,获得10
7秒前
8秒前
活泼的电脑完成签到,获得积分10
8秒前
AAA完成签到,获得积分20
8秒前
9秒前
李雨完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
空空完成签到 ,获得积分10
9秒前
cai发布了新的文献求助10
9秒前
邢广贺完成签到,获得积分10
10秒前
Ava应助wjt采纳,获得10
10秒前
身柏发布了新的文献求助10
10秒前
亭子完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502