亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ding应助伶俐的高烽采纳,获得10
2秒前
dolabmu完成签到 ,获得积分10
4秒前
7秒前
8秒前
Dr.YYF.发布了新的文献求助10
9秒前
CipherSage应助Zylan采纳,获得10
10秒前
HD发布了新的文献求助10
11秒前
1997SD发布了新的文献求助10
11秒前
12秒前
tdtk发布了新的文献求助10
12秒前
昆工完成签到 ,获得积分10
13秒前
16秒前
Lau发布了新的文献求助10
16秒前
yzy完成签到 ,获得积分10
18秒前
Dr.YYF.完成签到,获得积分10
18秒前
HD完成签到,获得积分10
19秒前
William_l_c完成签到,获得积分10
22秒前
Zilch驳回了cbj应助
25秒前
26秒前
HD关闭了HD文献求助
26秒前
duoduoqian发布了新的文献求助10
27秒前
孙同学完成签到 ,获得积分10
27秒前
mo完成签到 ,获得积分10
33秒前
41秒前
ask基本上完成签到 ,获得积分10
41秒前
青皮橘子应助tdtk采纳,获得10
41秒前
43秒前
duoduoqian完成签到,获得积分10
47秒前
47秒前
50秒前
58秒前
Lau完成签到,获得积分10
58秒前
xxx完成签到,获得积分20
59秒前
1分钟前
1分钟前
秋老众少年完成签到 ,获得积分10
1分钟前
852应助可乐采纳,获得10
1分钟前
1分钟前
1分钟前
Enckson完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493698
求助须知:如何正确求助?哪些是违规求助? 4591739
关于积分的说明 14434492
捐赠科研通 4524114
什么是DOI,文献DOI怎么找? 2478624
邀请新用户注册赠送积分活动 1463650
关于科研通互助平台的介绍 1436456