Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助zzzzzzz采纳,获得10
1秒前
你好发布了新的文献求助10
2秒前
3秒前
研友_pnxglL发布了新的文献求助10
3秒前
甜蜜的大象完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
6秒前
Rochmannn完成签到,获得积分10
6秒前
内向秋寒发布了新的文献求助10
8秒前
9秒前
nekoz发布了新的文献求助10
9秒前
水雾发布了新的文献求助10
10秒前
11秒前
张六六完成签到,获得积分10
12秒前
12秒前
Lee完成签到 ,获得积分10
14秒前
蓝天应助niko采纳,获得10
15秒前
愉快天亦发布了新的文献求助10
16秒前
zhanlan发布了新的文献求助10
17秒前
Aries完成签到,获得积分20
17秒前
勤奋橘子完成签到,获得积分10
18秒前
SciGPT应助leiyuekai采纳,获得10
18秒前
19秒前
缓慢凤凰发布了新的文献求助10
19秒前
烟花应助香菜头采纳,获得30
21秒前
量子星尘发布了新的文献求助10
22秒前
wanci应助zzh采纳,获得10
23秒前
24秒前
天天快乐应助落日出逃采纳,获得10
25秒前
赵永刚完成签到,获得积分10
25秒前
Aries关注了科研通微信公众号
25秒前
阿杰完成签到,获得积分10
26秒前
柒染完成签到 ,获得积分10
28秒前
小天完成签到 ,获得积分10
29秒前
30秒前
CR7应助李嘉图采纳,获得20
30秒前
我是老大应助曹博盛采纳,获得30
31秒前
小天关注了科研通微信公众号
32秒前
hao发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707