Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 复合材料 程序设计语言
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atalanta完成签到,获得积分10
刚刚
1秒前
情怀应助背后翩跹采纳,获得10
1秒前
欣喜若灵发布了新的文献求助10
1秒前
完美世界应助Xiaoyan采纳,获得10
3秒前
3秒前
22632发布了新的文献求助10
4秒前
小蘑菇应助包容的琦采纳,获得30
4秒前
5秒前
7秒前
9秒前
仅此而已应助cyy采纳,获得10
10秒前
研友_aLjAN8完成签到,获得积分10
10秒前
22632完成签到,获得积分20
10秒前
快乐的烨磊完成签到,获得积分10
11秒前
iyson完成签到 ,获得积分10
11秒前
11秒前
11秒前
Fan完成签到,获得积分10
12秒前
背后翩跹完成签到,获得积分20
13秒前
奔跑石小猛完成签到,获得积分10
13秒前
15秒前
sallyieong完成签到 ,获得积分10
15秒前
16秒前
背后翩跹发布了新的文献求助10
16秒前
依依完成签到 ,获得积分10
17秒前
17秒前
111完成签到,获得积分10
17秒前
开水完成签到,获得积分10
18秒前
温暖幻桃发布了新的文献求助10
19秒前
灯灯完成签到 ,获得积分10
19秒前
20秒前
21秒前
李健应助科研小达子采纳,获得10
22秒前
包容的琦完成签到,获得积分20
23秒前
24秒前
科研兵发布了新的文献求助10
24秒前
25秒前
qianqian完成签到 ,获得积分10
25秒前
LILI完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012