Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bbihk完成签到,获得积分10
2秒前
3秒前
zndxlsb发布了新的文献求助10
3秒前
可爱的函函应助小鲤鱼采纳,获得10
5秒前
5秒前
智障猫完成签到,获得积分10
6秒前
7秒前
xdc完成签到,获得积分20
7秒前
7秒前
阳光的雪珊完成签到 ,获得积分10
7秒前
Позовименя完成签到,获得积分10
7秒前
小猪存钱罐完成签到,获得积分10
8秒前
10秒前
purejun发布了新的文献求助10
10秒前
10秒前
邵洋完成签到,获得积分10
12秒前
奋斗灵安发布了新的文献求助10
13秒前
热情的笑白完成签到,获得积分10
13秒前
darren发布了新的文献求助10
14秒前
lpk完成签到,获得积分10
14秒前
Jasper应助purejun采纳,获得10
15秒前
在水一方应助zndxlsb采纳,获得10
16秒前
HHHZZZ完成签到,获得积分10
17秒前
橘笙完成签到,获得积分10
18秒前
nlix发布了新的文献求助10
18秒前
乐乐应助忧郁三问采纳,获得10
18秒前
小点点cy_完成签到 ,获得积分10
18秒前
Oasis完成签到,获得积分10
18秒前
斯文败类应助吃人陈采纳,获得30
20秒前
20秒前
purejun完成签到,获得积分10
21秒前
开开心心的开心完成签到,获得积分10
22秒前
22秒前
烟花应助小单采纳,获得10
23秒前
vivian发布了新的文献求助10
23秒前
NMR完成签到,获得积分10
24秒前
小木虫完成签到,获得积分10
24秒前
c7发布了新的文献求助10
25秒前
冬日暖阳2026完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565427
求助须知:如何正确求助?哪些是违规求助? 4650458
关于积分的说明 14691289
捐赠科研通 4592348
什么是DOI,文献DOI怎么找? 2519609
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463199