Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐身小怪兽完成签到 ,获得积分10
刚刚
四体不勤发布了新的文献求助10
刚刚
醒醒发布了新的文献求助10
1秒前
liuqingyun完成签到,获得积分10
1秒前
2秒前
封闭货车完成签到 ,获得积分10
2秒前
科研通AI6应助tim采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
Benji发布了新的文献求助10
2秒前
3秒前
5秒前
doctor发布了新的文献求助10
5秒前
小二郎应助Kittymiaoo采纳,获得10
6秒前
6秒前
CT发布了新的文献求助10
7秒前
8秒前
属下存在感完成签到,获得积分10
8秒前
小二郎应助yck1027采纳,获得10
8秒前
Ann发布了新的文献求助10
9秒前
怕黑的含桃完成签到,获得积分10
9秒前
龅牙苏发布了新的文献求助10
10秒前
科研通AI2S应助liuqingyun采纳,获得10
13秒前
13秒前
万能图书馆应助标致幼菱采纳,获得10
13秒前
14秒前
小小精神应助Benji采纳,获得10
14秒前
jjy完成签到,获得积分10
14秒前
T=T生物完成签到,获得积分10
14秒前
小糊涂完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
龅牙苏完成签到,获得积分10
16秒前
共享精神应助汪勇采纳,获得10
16秒前
不吃橘子完成签到,获得积分10
16秒前
Cathy完成签到,获得积分10
19秒前
充电宝应助好运莲莲莲采纳,获得10
19秒前
分隔符发布了新的文献求助10
19秒前
CT完成签到,获得积分10
20秒前
遇见完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299