Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accept完成签到,获得积分10
刚刚
FL发布了新的文献求助20
1秒前
ding应助li采纳,获得10
2秒前
超帅乐荷完成签到,获得积分10
2秒前
3秒前
赘婿应助sakura采纳,获得50
3秒前
科研通AI6应助wxaaaa采纳,获得10
3秒前
打打应助顾初安采纳,获得10
3秒前
4秒前
4秒前
小任完成签到,获得积分20
4秒前
如初发布了新的文献求助200
5秒前
Orange应助sharronjxx采纳,获得10
5秒前
ING完成签到,获得积分10
6秒前
fwb发布了新的文献求助10
6秒前
6秒前
安安完成签到 ,获得积分10
6秒前
深情安青应助mosisa采纳,获得10
6秒前
7秒前
Luron完成签到,获得积分10
8秒前
F1120发布了新的文献求助10
8秒前
小任发布了新的文献求助10
8秒前
9秒前
7喜完成签到,获得积分10
9秒前
FL完成签到,获得积分10
9秒前
159完成签到,获得积分10
10秒前
Amelk完成签到,获得积分10
10秒前
11秒前
000发布了新的文献求助10
12秒前
12秒前
12秒前
王蕾发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
RLV发布了新的文献求助30
13秒前
852应助浮晨采纳,获得10
13秒前
159发布了新的文献求助10
14秒前
hiiuuu完成签到,获得积分20
14秒前
14秒前
Owen应助妮妮采纳,获得10
15秒前
小合发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577266
求助须知:如何正确求助?哪些是违规求助? 4662538
关于积分的说明 14742003
捐赠科研通 4603139
什么是DOI,文献DOI怎么找? 2526153
邀请新用户注册赠送积分活动 1496028
关于科研通互助平台的介绍 1465499