Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
foolish发布了新的文献求助10
2秒前
2秒前
三十三完成签到,获得积分10
2秒前
耿双贵发布了新的文献求助10
3秒前
杨诗婕发布了新的文献求助10
4秒前
tsunami完成签到,获得积分20
4秒前
zyf完成签到,获得积分10
4秒前
小鱼仔完成签到,获得积分20
4秒前
阿牛哥完成签到,获得积分10
5秒前
我要发sci完成签到,获得积分10
5秒前
HanFeiZi完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
烟雨别离发布了新的文献求助100
8秒前
banana完成签到,获得积分10
10秒前
10秒前
10秒前
Yu完成签到,获得积分10
11秒前
12秒前
余喆完成签到,获得积分10
12秒前
12秒前
SciGPT应助decade采纳,获得10
13秒前
张龙雨完成签到 ,获得积分10
14秒前
14秒前
张丹兰完成签到,获得积分10
15秒前
15秒前
15秒前
月儿发布了新的文献求助10
15秒前
oopsabc完成签到,获得积分10
15秒前
sytbb完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助honghong1992采纳,获得10
16秒前
小星星完成签到,获得积分10
16秒前
糊涂的皮卡丘完成签到,获得积分10
16秒前
科研通AI5应助蓝风铃采纳,获得10
16秒前
吃肯德基发布了新的文献求助10
16秒前
口腔溃杨完成签到 ,获得积分10
17秒前
搜集达人应助略略略采纳,获得10
17秒前
图图驳回了Hello应助
18秒前
张丹兰发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146528
求助须知:如何正确求助?哪些是违规求助? 4343439
关于积分的说明 13526708
捐赠科研通 4184572
什么是DOI,文献DOI怎么找? 2294727
邀请新用户注册赠送积分活动 1295166
关于科研通互助平台的介绍 1238264