已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology

可穿戴计算机 计算机科学 织物 人工智能 噪音(视频) 可穿戴技术 信号处理 信号(编程语言) 模式识别(心理学) 计算机视觉 计算机硬件 嵌入式系统 数字信号处理 材料科学 图像(数学) 程序设计语言 复合材料
作者
Yupeng Tian,Mohammad Abdizadeh,Amin Mahnam,Presish Bhattachan,Milad Alizadeh-Meghrazi,Ladan Eskandarian,Muammar Kabir,Idir Mellal,Miloš R. Popović,Milad Lankarany
标识
DOI:10.1109/embc44109.2020.9176393
摘要

Wearable sensors enable the simultaneous recording of several electrophysiological signals from the human body in a non-invasive and continuous manner. Textile sensors are garnering substantial interest in the wearable technology because they can be knitted directly into the daily-used objects like underwear, bra, dress, etc. However, accurate processing of signals recorded by textile sensors is extremely challenging due to the very low signal-to-noise ratio (SNR). Systematic classification of textile sensor noise (TSN) is necessary to: (i) identify different types of noise and their statistical characteristics, (ii) explore how each type of noise influences the electrophysiological signal, (iii) develop optimal textile-specific electronics that suppress TSN, and (iv) reproduce TSN and create large dataset of textile sensors to validate various machine learning and signal processing algorithms. In this paper, we develop a novel technique to classify textile sensor artifacts in ECG signals. By simultaneously recording signals from the waist (textile sensors) and chest (gel electrode), we extract TSN by removing the chest ECG signal from the recorded textile data. We classify TSN based on its morphological and statistical features in two main categories, namely, slow and fast. Linear prediction coding (LPC) is utilized to model each class of TSN by auto-regression coefficients and residues. The residual signal can be approximated by Gaussian distribution which enables reproducing slow and fast artifacts that not only preserve the similar morphological features but also fulfill the statistical properties of TSN. By reproducing TSN and adding them to clean ECG signals, we create a textile-like ECG signal which can be used to develop and validate different signal processing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aafrr完成签到 ,获得积分10
1秒前
Elesis发布了新的文献求助10
1秒前
风清扬发布了新的文献求助10
1秒前
002完成签到,获得积分10
1秒前
迅速煎蛋完成签到,获得积分10
4秒前
4秒前
4秒前
筱xiao完成签到,获得积分10
5秒前
懒癌晚期发布了新的文献求助10
5秒前
6秒前
贺贺完成签到,获得积分10
6秒前
huiiii8完成签到,获得积分10
7秒前
7秒前
顾矜应助佳期采纳,获得10
8秒前
9秒前
10秒前
LL发布了新的文献求助30
11秒前
zuihaodewomen完成签到 ,获得积分10
11秒前
yikiheting完成签到,获得积分10
12秒前
LU完成签到 ,获得积分10
12秒前
善学以致用应助应急食品采纳,获得10
14秒前
yofluenza发布了新的文献求助10
15秒前
16秒前
17秒前
烟花应助懒癌晚期采纳,获得10
17秒前
星辰大海应助杨德帅采纳,获得10
19秒前
不倦发布了新的文献求助10
21秒前
LU关注了科研通微信公众号
21秒前
lvlv完成签到,获得积分10
23秒前
23秒前
烂漫的易真完成签到,获得积分10
23秒前
25秒前
科研通AI6应助swy212采纳,获得10
26秒前
001完成签到,获得积分10
27秒前
28秒前
橙子发布了新的文献求助10
31秒前
34秒前
懒癌晚期发布了新的文献求助10
35秒前
卡布叻完成签到 ,获得积分10
35秒前
35秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485