聚二甲基硅氧烷
材料科学
聚四氟乙烯
硅橡胶
弹性体
摩擦电效应
复合材料
复合数
纳米发生器
硅酮
硅油
压电
作者
Renhao Zheng,Yuxin Chen,Hang Chi,Hong Qiu,Hao Xue,Hua Bai
标识
DOI:10.1021/acsami.0c18201
摘要
Silicone rubber elastomers are broadly used in various fields, where the three-dimensional (3D) printing of silicone rubber elastomers is important for the free construction of complex structures. Herein, a series of polydimethylsiloxane/polytetrafluoroethylene composite inks for direct-ink-writing 3D printing are developed. The inks are prepared by directly mixing a silicone rubber liquid precursor with polytetrafluoroethylene micropowder. The polytetrafluoroethylene micropowder serves as a thixotropic agent to regulate the rheological properties of the polydimethylsiloxane precursor to fulfill the requirement of 3D printing and endow the composite material with high electron affinity. The printed polydimethylsiloxane/polytetrafluoroethylene composite elastomer exhibits excellent elasticity and cyclic stability. A high-performance triboelectric nanogenerator is constructed with the 3D-printed polydimethylsiloxane/polytetrafluoroethylene composite as the triboelectric layer and elastic structure. This work establishes a new method of 3D printing polydimethylsiloxane-based elastomers and thus provides a new technique for constructing complex structures in flexible devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI