Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

计算机科学 强化学习 服务器 分布式计算 趋同(经济学) 移动边缘计算 人工智能 光学(聚焦) 资源配置 透视图(图形) GSM演进的增强数据速率 机器学习 计算机网络 物理 光学 经济 经济增长
作者
Xiaoyu Qiu,Weikun Zhang,Wuhui Chen,Zibin Zheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 1085-1101 被引量:84
标识
DOI:10.1109/tpds.2020.3042599
摘要

Mobile edge computing (MEC) is a promising solution to support resource-constrained devices by offloading tasks to the edge servers. However, traditional approaches (e.g., linear programming and game-theory methods) for computation offloading mainly focus on the immediate performance, potentially leading to performance degradation in the long run. Recent breakthroughs regarding deep reinforcement learning (DRL) provide alternative methods, which focus on maximizing the cumulative reward. Nonetheless, there exists a large gap to deploy real DRL applications in MEC. This is because: 1) training a well-performed DRL agent typically requires data with large quantities and high diversity, and 2) DRL training is usually accompanied by huge costs caused by trial-and-error. To address this mismatch, we study the applications of DRL on the multi-user computation offloading problem from a more practical perspective. In particular, we propose a distributed and collective DRL algorithm called DC-DRL with several improvements: 1) a distributed and collective training scheme that assimilates knowledge from multiple MEC environments, which not only greatly increases data amount and diversity but also spreads the exploration costs, 2) an updating method called adaptive n-step learning, which can improve training efficiency without suffering from the high variance caused by distributed training, and 3) combining the advantages of deep neuroevolution and policy gradient to maximize the utilization of multiple environments and prevent the premature convergence. Lastly, evaluation results demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, the exploration costs and final system costs are reduced by at least 43 and 9.4 percent, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwww发布了新的文献求助10
1秒前
哈哈哈发布了新的文献求助10
1秒前
ysk发布了新的文献求助10
4秒前
小樱颖子完成签到 ,获得积分10
6秒前
小二郎应助苗条傲蕾采纳,获得10
6秒前
6秒前
英姑应助班里采纳,获得10
6秒前
我下载不了论文啊完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
陈雨发布了新的文献求助10
13秒前
qiuli完成签到,获得积分10
13秒前
酷波er应助Kilig采纳,获得30
13秒前
无极微光应助废寝忘食采纳,获得40
14秒前
17秒前
17秒前
诗亭完成签到,获得积分10
17秒前
刘英岑完成签到,获得积分10
20秒前
王誉霖完成签到,获得积分10
20秒前
20秒前
阳光he完成签到,获得积分10
21秒前
班里发布了新的文献求助10
21秒前
啦啦啦123发布了新的文献求助10
22秒前
废寝忘食完成签到,获得积分10
22秒前
dandan完成签到,获得积分10
23秒前
25秒前
27秒前
啦啦啦123完成签到,获得积分10
27秒前
冷傲迎梦完成签到,获得积分20
30秒前
30秒前
ysk完成签到,获得积分10
31秒前
王辰宁完成签到,获得积分10
32秒前
小树完成签到 ,获得积分10
32秒前
gomm完成签到,获得积分10
32秒前
哈哈哈完成签到,获得积分10
33秒前
Rae完成签到,获得积分10
34秒前
冷傲迎梦发布了新的文献求助10
34秒前
35秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
迷路的糜完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365