Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

计算机科学 强化学习 服务器 分布式计算 趋同(经济学) 移动边缘计算 人工智能 光学(聚焦) 资源配置 透视图(图形) GSM演进的增强数据速率 机器学习 计算机网络 物理 光学 经济 经济增长
作者
Xiaoyu Qiu,Weikun Zhang,Wuhui Chen,Zibin Zheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 1085-1101 被引量:84
标识
DOI:10.1109/tpds.2020.3042599
摘要

Mobile edge computing (MEC) is a promising solution to support resource-constrained devices by offloading tasks to the edge servers. However, traditional approaches (e.g., linear programming and game-theory methods) for computation offloading mainly focus on the immediate performance, potentially leading to performance degradation in the long run. Recent breakthroughs regarding deep reinforcement learning (DRL) provide alternative methods, which focus on maximizing the cumulative reward. Nonetheless, there exists a large gap to deploy real DRL applications in MEC. This is because: 1) training a well-performed DRL agent typically requires data with large quantities and high diversity, and 2) DRL training is usually accompanied by huge costs caused by trial-and-error. To address this mismatch, we study the applications of DRL on the multi-user computation offloading problem from a more practical perspective. In particular, we propose a distributed and collective DRL algorithm called DC-DRL with several improvements: 1) a distributed and collective training scheme that assimilates knowledge from multiple MEC environments, which not only greatly increases data amount and diversity but also spreads the exploration costs, 2) an updating method called adaptive n-step learning, which can improve training efficiency without suffering from the high variance caused by distributed training, and 3) combining the advantages of deep neuroevolution and policy gradient to maximize the utilization of multiple environments and prevent the premature convergence. Lastly, evaluation results demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, the exploration costs and final system costs are reduced by at least 43 and 9.4 percent, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
like发布了新的文献求助10
刚刚
1秒前
汤圆完成签到,获得积分10
1秒前
独特的高山完成签到,获得积分10
1秒前
1秒前
紫霄客完成签到,获得积分10
1秒前
2秒前
烟花应助蛙蛙采纳,获得10
2秒前
2秒前
han发布了新的文献求助10
2秒前
郭1994完成签到 ,获得积分10
3秒前
sxb10101应助于文志采纳,获得50
3秒前
3秒前
林深沉发布了新的文献求助10
3秒前
闪闪书桃完成签到,获得积分10
3秒前
4秒前
陈欣发布了新的文献求助10
4秒前
11231发布了新的文献求助10
5秒前
5秒前
Tong完成签到,获得积分10
5秒前
ronll发布了新的文献求助10
5秒前
悦耳白山发布了新的文献求助10
5秒前
dophin发布了新的文献求助10
6秒前
6秒前
xiaoguoxiaoguo完成签到,获得积分10
7秒前
warrior发布了新的文献求助10
7秒前
英姑应助包包琪采纳,获得10
7秒前
7秒前
SR完成签到,获得积分10
8秒前
9秒前
芝士发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
BowieHuang应助独特的高山采纳,获得10
11秒前
BowieHuang应助独特的高山采纳,获得10
11秒前
GZH完成签到,获得积分10
11秒前
yangxiaoya完成签到,获得积分10
12秒前
ronll完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914