Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

计算机科学 强化学习 服务器 分布式计算 趋同(经济学) 移动边缘计算 人工智能 光学(聚焦) 资源配置 透视图(图形) GSM演进的增强数据速率 机器学习 计算机网络 经济增长 光学 物理 经济
作者
Xiaoyu Qiu,Weikun Zhang,Wuhui Chen,Zibin Zheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 1085-1101 被引量:84
标识
DOI:10.1109/tpds.2020.3042599
摘要

Mobile edge computing (MEC) is a promising solution to support resource-constrained devices by offloading tasks to the edge servers. However, traditional approaches (e.g., linear programming and game-theory methods) for computation offloading mainly focus on the immediate performance, potentially leading to performance degradation in the long run. Recent breakthroughs regarding deep reinforcement learning (DRL) provide alternative methods, which focus on maximizing the cumulative reward. Nonetheless, there exists a large gap to deploy real DRL applications in MEC. This is because: 1) training a well-performed DRL agent typically requires data with large quantities and high diversity, and 2) DRL training is usually accompanied by huge costs caused by trial-and-error. To address this mismatch, we study the applications of DRL on the multi-user computation offloading problem from a more practical perspective. In particular, we propose a distributed and collective DRL algorithm called DC-DRL with several improvements: 1) a distributed and collective training scheme that assimilates knowledge from multiple MEC environments, which not only greatly increases data amount and diversity but also spreads the exploration costs, 2) an updating method called adaptive n-step learning, which can improve training efficiency without suffering from the high variance caused by distributed training, and 3) combining the advantages of deep neuroevolution and policy gradient to maximize the utilization of multiple environments and prevent the premature convergence. Lastly, evaluation results demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, the exploration costs and final system costs are reduced by at least 43 and 9.4 percent, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼应助vivid采纳,获得20
刚刚
咕噜噜完成签到,获得积分10
刚刚
Owen应助henry采纳,获得10
1秒前
2秒前
elegg发布了新的文献求助10
2秒前
2秒前
2秒前
bkagyin应助zmy采纳,获得10
2秒前
Henry完成签到,获得积分10
3秒前
Jasper应助斯文以蓝采纳,获得10
3秒前
3秒前
Dongsy完成签到,获得积分10
3秒前
4秒前
天天快乐应助哈哈哈采纳,获得10
4秒前
今后应助haha采纳,获得10
4秒前
jade完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
慕青应助飞龙采纳,获得10
6秒前
7秒前
方远锋发布了新的文献求助10
7秒前
7秒前
8秒前
虚幻芷发布了新的文献求助10
8秒前
msk发布了新的文献求助10
8秒前
杨哈哈发布了新的文献求助10
8秒前
沈苏完成签到,获得积分10
9秒前
lalala发布了新的文献求助10
9秒前
10秒前
hss完成签到,获得积分10
10秒前
无花果应助某某采纳,获得10
10秒前
10秒前
11秒前
11秒前
wu61发布了新的文献求助10
12秒前
嘉心糖应助cloudy90采纳,获得20
12秒前
12秒前
14秒前
Cherish发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305036
求助须知:如何正确求助?哪些是违规求助? 2938975
关于积分的说明 8490811
捐赠科研通 2613426
什么是DOI,文献DOI怎么找? 1427420
科研通“疑难数据库(出版商)”最低求助积分说明 662969
邀请新用户注册赠送积分活动 647614