Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

计算机科学 强化学习 服务器 分布式计算 趋同(经济学) 移动边缘计算 人工智能 光学(聚焦) 资源配置 透视图(图形) GSM演进的增强数据速率 机器学习 计算机网络 物理 光学 经济 经济增长
作者
Xiaoyu Qiu,Weikun Zhang,Wuhui Chen,Zibin Zheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 1085-1101 被引量:84
标识
DOI:10.1109/tpds.2020.3042599
摘要

Mobile edge computing (MEC) is a promising solution to support resource-constrained devices by offloading tasks to the edge servers. However, traditional approaches (e.g., linear programming and game-theory methods) for computation offloading mainly focus on the immediate performance, potentially leading to performance degradation in the long run. Recent breakthroughs regarding deep reinforcement learning (DRL) provide alternative methods, which focus on maximizing the cumulative reward. Nonetheless, there exists a large gap to deploy real DRL applications in MEC. This is because: 1) training a well-performed DRL agent typically requires data with large quantities and high diversity, and 2) DRL training is usually accompanied by huge costs caused by trial-and-error. To address this mismatch, we study the applications of DRL on the multi-user computation offloading problem from a more practical perspective. In particular, we propose a distributed and collective DRL algorithm called DC-DRL with several improvements: 1) a distributed and collective training scheme that assimilates knowledge from multiple MEC environments, which not only greatly increases data amount and diversity but also spreads the exploration costs, 2) an updating method called adaptive n-step learning, which can improve training efficiency without suffering from the high variance caused by distributed training, and 3) combining the advantages of deep neuroevolution and policy gradient to maximize the utilization of multiple environments and prevent the premature convergence. Lastly, evaluation results demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, the exploration costs and final system costs are reduced by at least 43 and 9.4 percent, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_ndv5j8完成签到,获得积分10
刚刚
苹什么应助白昼の月采纳,获得10
1秒前
2秒前
太空完成签到,获得积分10
2秒前
3秒前
leemiii完成签到 ,获得积分10
4秒前
4秒前
4秒前
纪你巴发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
zhuzhu发布了新的文献求助10
7秒前
刘英岑发布了新的文献求助10
7秒前
kelakola完成签到,获得积分10
8秒前
8秒前
恰逢发布了新的文献求助10
8秒前
科研通AI6应助研友_Lmg01Z采纳,获得10
8秒前
guojingjing发布了新的文献求助10
8秒前
9秒前
赘婿应助monkey采纳,获得10
9秒前
9秒前
科研之家完成签到,获得积分10
10秒前
10秒前
ZZZ完成签到,获得积分10
11秒前
寒霜扬名完成签到 ,获得积分10
11秒前
11秒前
小蘑菇应助王梦秋采纳,获得10
12秒前
酷波er应助小李爱查文献采纳,获得10
13秒前
万能图书馆应助陈陈采纳,获得10
14秒前
perseverance发布了新的文献求助10
14秒前
14秒前
不止夏天发布了新的文献求助10
15秒前
seattle完成签到,获得积分10
15秒前
第七兵团司令完成签到,获得积分10
15秒前
17秒前
谷云应助guojingjing采纳,获得10
17秒前
如如完成签到,获得积分10
17秒前
17秒前
anny.white完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812