Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

计算机科学 强化学习 服务器 分布式计算 趋同(经济学) 移动边缘计算 人工智能 光学(聚焦) 资源配置 透视图(图形) GSM演进的增强数据速率 机器学习 计算机网络 物理 光学 经济 经济增长
作者
Xiaoyu Qiu,Weikun Zhang,Wuhui Chen,Zibin Zheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 1085-1101 被引量:84
标识
DOI:10.1109/tpds.2020.3042599
摘要

Mobile edge computing (MEC) is a promising solution to support resource-constrained devices by offloading tasks to the edge servers. However, traditional approaches (e.g., linear programming and game-theory methods) for computation offloading mainly focus on the immediate performance, potentially leading to performance degradation in the long run. Recent breakthroughs regarding deep reinforcement learning (DRL) provide alternative methods, which focus on maximizing the cumulative reward. Nonetheless, there exists a large gap to deploy real DRL applications in MEC. This is because: 1) training a well-performed DRL agent typically requires data with large quantities and high diversity, and 2) DRL training is usually accompanied by huge costs caused by trial-and-error. To address this mismatch, we study the applications of DRL on the multi-user computation offloading problem from a more practical perspective. In particular, we propose a distributed and collective DRL algorithm called DC-DRL with several improvements: 1) a distributed and collective training scheme that assimilates knowledge from multiple MEC environments, which not only greatly increases data amount and diversity but also spreads the exploration costs, 2) an updating method called adaptive n-step learning, which can improve training efficiency without suffering from the high variance caused by distributed training, and 3) combining the advantages of deep neuroevolution and policy gradient to maximize the utilization of multiple environments and prevent the premature convergence. Lastly, evaluation results demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, the exploration costs and final system costs are reduced by at least 43 and 9.4 percent, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助YING采纳,获得10
刚刚
1秒前
小蘑菇应助仁爱的觅夏采纳,获得30
1秒前
cadnash完成签到,获得积分10
1秒前
花Cheung完成签到,获得积分10
1秒前
砍柴少年发布了新的文献求助10
1秒前
刘佳明完成签到,获得积分10
1秒前
丙子哥发布了新的文献求助10
1秒前
2秒前
小王发布了新的文献求助10
3秒前
3秒前
慕昊强完成签到,获得积分10
3秒前
zxdnbb发布了新的文献求助10
4秒前
Zoe完成签到,获得积分10
4秒前
乐乐应助欢喜的之瑶采纳,获得10
4秒前
www完成签到,获得积分10
4秒前
善良的从霜完成签到,获得积分10
5秒前
张张发布了新的文献求助10
5秒前
小乐子完成签到,获得积分10
6秒前
叶上发布了新的文献求助10
6秒前
你猜完成签到,获得积分10
6秒前
李雨完成签到,获得积分10
6秒前
混世大魔王先生完成签到,获得积分10
7秒前
7秒前
苹果松完成签到 ,获得积分10
8秒前
零点起步完成签到,获得积分10
9秒前
Jenny完成签到,获得积分10
9秒前
lucky完成签到,获得积分10
9秒前
xtt完成签到,获得积分10
9秒前
眯眯眼的衬衫应助Guochunbao采纳,获得10
10秒前
华仔应助swing采纳,获得10
10秒前
希望天下0贩的0应助YYY采纳,获得10
10秒前
10秒前
10秒前
精明的盼雁完成签到,获得积分10
11秒前
12秒前
hcsdgf完成签到 ,获得积分10
12秒前
李爱国应助好学泡泡采纳,获得30
12秒前
13秒前
花醉折枝完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874