Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

计算机科学 强化学习 服务器 分布式计算 趋同(经济学) 移动边缘计算 人工智能 光学(聚焦) 资源配置 透视图(图形) GSM演进的增强数据速率 机器学习 计算机网络 物理 光学 经济 经济增长
作者
Xiaoyu Qiu,Weikun Zhang,Wuhui Chen,Zibin Zheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 1085-1101 被引量:84
标识
DOI:10.1109/tpds.2020.3042599
摘要

Mobile edge computing (MEC) is a promising solution to support resource-constrained devices by offloading tasks to the edge servers. However, traditional approaches (e.g., linear programming and game-theory methods) for computation offloading mainly focus on the immediate performance, potentially leading to performance degradation in the long run. Recent breakthroughs regarding deep reinforcement learning (DRL) provide alternative methods, which focus on maximizing the cumulative reward. Nonetheless, there exists a large gap to deploy real DRL applications in MEC. This is because: 1) training a well-performed DRL agent typically requires data with large quantities and high diversity, and 2) DRL training is usually accompanied by huge costs caused by trial-and-error. To address this mismatch, we study the applications of DRL on the multi-user computation offloading problem from a more practical perspective. In particular, we propose a distributed and collective DRL algorithm called DC-DRL with several improvements: 1) a distributed and collective training scheme that assimilates knowledge from multiple MEC environments, which not only greatly increases data amount and diversity but also spreads the exploration costs, 2) an updating method called adaptive n-step learning, which can improve training efficiency without suffering from the high variance caused by distributed training, and 3) combining the advantages of deep neuroevolution and policy gradient to maximize the utilization of multiple environments and prevent the premature convergence. Lastly, evaluation results demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, the exploration costs and final system costs are reduced by at least 43 and 9.4 percent, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Echo发布了新的文献求助10
刚刚
谦让寄容完成签到,获得积分10
刚刚
刚刚
fan完成签到,获得积分10
1秒前
1秒前
max发布了新的文献求助10
2秒前
碧蓝天晴发布了新的文献求助10
2秒前
Roger发布了新的文献求助10
2秒前
juhcy发布了新的文献求助10
2秒前
3秒前
xiaoyu完成签到,获得积分10
3秒前
焰色天雷完成签到,获得积分20
3秒前
文静的摩托完成签到,获得积分10
3秒前
友好的小萱完成签到 ,获得积分10
3秒前
4秒前
gyyy完成签到,获得积分10
4秒前
辐睿完成签到,获得积分10
4秒前
长颈鹿发布了新的文献求助10
4秒前
4秒前
sss完成签到,获得积分20
5秒前
5秒前
ifast完成签到 ,获得积分10
5秒前
5秒前
lixiangrui110完成签到,获得积分10
5秒前
浮浮沉沉完成签到,获得积分10
5秒前
6秒前
现代飞鸟完成签到,获得积分10
6秒前
LALball发布了新的文献求助10
6秒前
小河向东流完成签到,获得积分10
6秒前
PHI完成签到 ,获得积分10
6秒前
JamesPei应助ZZY采纳,获得10
6秒前
7秒前
zhuzhu发布了新的文献求助10
7秒前
7秒前
秋鱼完成签到,获得积分10
7秒前
theverve发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助20
8秒前
丘比特应助啦啦啦采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006