九氟化硫
基因敲除
生物
细胞生物学
体外
毒性
体内
化学
生物化学
基因
夜蛾
重组DNA
生物技术
有机化学
作者
Lei Guo,Changyou Li,Pei Liang,Dong Chu
标识
DOI:10.1021/acs.jafc.9b04028
摘要
Ca2+-binding proteins (CaBPs) are widely distributed as Ca2+ sensor relay proteins that regulate various cellular processes, including Ca2+ homeostasis. Diamide insecticides such as cyantraniliprole kill insects by disrupting the Ca2+ homeostasis in muscle cells. However, less attention has been paid to the roles of CaBPs in response to insecticides. In this study, two CaBP genes (BtCaBP1 and BtCaBP2) were identified in the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and their functions in response to cyantraniliprole were investigated. After expression of BtCaBP1 and BtCaBP2 in vitro, the results of Ca2+ imaging and cytotoxicity assay revealed that the overexpression of each of the BtCaBPs stabilized Ca2+ concentration in the cytoplasm after exposure to cyantraniliprole and decreased the toxicity of cyantraniliprole against Sf9 cells. However, the knockdown of BtCaBP1 or BtCaBP2 in vivo significantly increased the toxicity of cyantraniliprole to B. tabaci. Taken together, these results provide evidence that BtCaBP1 and BtCaBP2 play a role in response to cyantraniliprole exposure through stabilization of Ca2+ concentration in whiteflies.
科研通智能强力驱动
Strongly Powered by AbleSci AI