An artificial intelligence decision support system for the management of type 1 diabetes

决策支持系统 计算机科学 人工智能 知识管理
作者
Nichole S. Tyler,Clara Mosquera-Lopez,Leah M. Wilson,Robert H. Dodier,Deborah Branigan,Virginia Gabo,Florian H. Guillot,Wade W. Hilts,Joseph El Youssef,Jessica R. Castle,Peter G. Jacobs
出处
期刊:Nature metabolism [Springer Nature]
卷期号:2 (7): 612-619 被引量:110
标识
DOI:10.1038/s42255-020-0212-y
摘要

Type 1 diabetes (T1D) is characterized by pancreatic beta cell dysfunction and insulin depletion. Over 40% of people with T1D manage their glucose through multiple injections of long-acting basal and short-acting bolus insulin, so-called multiple daily injections (MDI)1,2. Errors in dosing can lead to life-threatening hypoglycaemia events (<70 mg dl-1) and hyperglycaemia (>180 mg dl-1), increasing the risk of retinopathy, neuropathy, and nephropathy. Machine learning (artificial intelligence) approaches are being harnessed to incorporate decision support into many medical specialties. Here, we report an algorithm that provides weekly insulin dosage recommendations to adults with T1D using MDI therapy. We employ a unique virtual platform3 to generate over 50,000 glucose observations to train a k-nearest neighbours4 decision support system (KNN-DSS) to identify causes of hyperglycaemia or hypoglycaemia and determine necessary insulin adjustments from a set of 12 potential recommendations. The KNN-DSS algorithm achieves an overall agreement with board-certified endocrinologists of 67.9% when validated on real-world human data, and delivers safe recommendations, per endocrinologist review. A comparison of inter-physician-recommended adjustments to insulin pump therapy indicates full agreement of 41.2% among endocrinologists, which is consistent with previous measures of inter-physician agreement (41-45%)5. In silico3,6 benchmarking using a platform accepted by the United States Food and Drug Administration for evaluation of artificial pancreas technologies indicates substantial improvement in glycaemic outcomes after 12 weeks of KNN-DSS use. Our data indicate that the KNN-DSS allows for early identification of dangerous insulin regimens and may be used to improve glycaemic outcomes and prevent life-threatening complications in people with T1D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森宝发布了新的文献求助10
刚刚
1秒前
Re发布了新的文献求助20
3秒前
易小名发布了新的文献求助10
4秒前
baiqiuqiu发布了新的文献求助10
4秒前
伽娜完成签到,获得积分20
4秒前
桐桐应助吴雨涛采纳,获得10
5秒前
JY给JY的求助进行了留言
5秒前
6秒前
6秒前
8秒前
香蕉觅云应助kkx采纳,获得10
8秒前
8秒前
shuangcheng完成签到,获得积分10
8秒前
sg关闭了sg文献求助
9秒前
韦雪莲发布了新的文献求助10
9秒前
云朵发布了新的文献求助20
9秒前
9秒前
zz9301x发布了新的文献求助30
9秒前
黄毅完成签到,获得积分10
9秒前
爆米花应助隐形觅翠采纳,获得10
10秒前
小高高完成签到,获得积分10
10秒前
彭于晏应助XIEMIN采纳,获得10
10秒前
magic完成签到 ,获得积分10
11秒前
英俊的铭应助kkssrrrr采纳,获得10
11秒前
11秒前
11秒前
ppp完成签到,获得积分10
12秒前
唐咩咩咩完成签到,获得积分10
12秒前
Licyan完成签到,获得积分10
12秒前
quhayley应助壮观雁山采纳,获得10
12秒前
Wenhao Zhao完成签到,获得积分10
12秒前
wxxsx完成签到,获得积分10
13秒前
13秒前
卓涛发布了新的文献求助10
14秒前
晏清完成签到 ,获得积分10
15秒前
Akim应助彭佳丽采纳,获得10
15秒前
大方易梦完成签到 ,获得积分10
15秒前
小高高发布了新的文献求助10
15秒前
ding应助斯文媚颜采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782