Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study

萧条(经济学) 队列 医学 队列研究 入射(几何) 老年学 内科学 光学 物理 宏观经济学 经济
作者
Diego Librenza‐Garcia,Ives Cavalcante Passos,Jacson Gabriel Feiten,Paulo A. Lotufo,Alessandra C. Goulart,Itamar S Santos,María Carmen Viana,Isabela M. Benseñor,André R. Brunoni
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:51 (16): 2895-2903 被引量:22
标识
DOI:10.1017/s0033291720001579
摘要

Abstract.Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level.We examined baseline (2008-2010) and follow-up (2012-2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression.We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76-0.82), 0.71 (95% CI 0.66-0.77), 0.90 (95% CI 0.86-0.95) for analyses 1, 2, and 3, respectively.Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助MC采纳,获得100
刚刚
充电宝应助消消乐采纳,获得10
刚刚
无花果应助闪闪的初南采纳,获得10
2秒前
2秒前
脑洞疼应助哦哟采纳,获得10
2秒前
缓慢如南发布了新的文献求助10
3秒前
不安的采白完成签到,获得积分10
3秒前
3秒前
悲伤火龙果完成签到 ,获得积分10
4秒前
4秒前
纯真涵菱发布了新的文献求助10
4秒前
mx发布了新的文献求助10
5秒前
科目三应助wxy采纳,获得10
5秒前
JamesPei应助cyy1226采纳,获得10
5秒前
谨慎飞丹完成签到 ,获得积分10
5秒前
5秒前
从来都不会放弃zr完成签到,获得积分10
5秒前
6秒前
6秒前
杨杨完成签到 ,获得积分10
6秒前
Eve完成签到 ,获得积分10
7秒前
7秒前
zpq发布了新的文献求助10
7秒前
jella完成签到,获得积分10
8秒前
18560406012发布了新的文献求助10
8秒前
嗯哼应助众人皆醉我独醒采纳,获得20
9秒前
瞬间发布了新的文献求助150
9秒前
wyy发布了新的文献求助10
9秒前
无辜的夏兰完成签到,获得积分10
9秒前
dadigege完成签到,获得积分10
9秒前
上邪发布了新的文献求助10
10秒前
11秒前
思源发布了新的文献求助10
11秒前
十三完成签到,获得积分10
13秒前
英姑应助酷炫小馒头采纳,获得10
13秒前
14秒前
魔幻的诗桃完成签到,获得积分10
14秒前
溪听发布了新的文献求助10
15秒前
晶莹黎发布了新的文献求助10
15秒前
所所应助日月采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650