Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study

萧条(经济学) 队列 医学 队列研究 入射(几何) 老年学 内科学 经济 宏观经济学 物理 光学
作者
Diego Librenza‐Garcia,Ives Cavalcante Passos,Jacson Gabriel Feiten,Paulo A. Lotufo,Alessandra C. Goulart,Itamar S Santos,María Carmen Viana,Isabela M. Benseñor,André R. Brunoni
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:51 (16): 2895-2903 被引量:22
标识
DOI:10.1017/s0033291720001579
摘要

Abstract.Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level.We examined baseline (2008-2010) and follow-up (2012-2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression.We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76-0.82), 0.71 (95% CI 0.66-0.77), 0.90 (95% CI 0.86-0.95) for analyses 1, 2, and 3, respectively.Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑猫咪发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
俊杰发布了新的文献求助10
4秒前
5秒前
8秒前
hui发布了新的文献求助10
9秒前
从容傲柏发布了新的文献求助10
9秒前
Fine完成签到,获得积分10
10秒前
lumia发布了新的文献求助10
11秒前
阿白发布了新的文献求助10
11秒前
豪子完成签到 ,获得积分10
12秒前
hjhj完成签到,获得积分10
12秒前
15秒前
fanglin123发布了新的文献求助10
15秒前
烟花应助康康采纳,获得10
15秒前
宁静致远完成签到,获得积分10
16秒前
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
yydragen应助科研通管家采纳,获得50
17秒前
酷波er应助科研通管家采纳,获得10
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
小马甲应助刘强东采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
罗YF发布了新的文献求助10
19秒前
内向书白发布了新的文献求助10
21秒前
呐呐完成签到,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629