A Physiology-Based Flexible Strap Sensor for Gesture Recognition by Sensing Tendon Deformation

手势 有线手套 计算机科学 人工智能 手势识别 计算机视觉
作者
Yuxin Peng,Jianxiang Wang,Kai Pang,Wenming Liu,Jun Meng,Bo Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (7): 9449-9456 被引量:19
标识
DOI:10.1109/jsen.2021.3054562
摘要

Gesture recognition using machine-learning methods has been widely studied for human-machine interaction including advanced cybernetics, virtual reality, and healthcare systems. In this paper, we propose a physiology-based flexible strap sensor attached to the back of the hand. By sensing the tendon deformation on the back of the hand, the proposed sensor can recognize hand gestures with high accuracy. The proposed sensor contains six pressure sensing units connected by a flexible strap substrate. The graphene aerogel (GA) serves as the sensitive material of the sensing unit, which is sealed with two polyethylene terephthalate (PET) films. The size of the proposed sensor is 130 mm (L) × 6 mm (W) × 3 mm (H), which is flexible and stretchable for fitting different hands and different gestures. The sensing units can cover the main tendons on the back of the hand, and the data collected from the sensing units can provide distinguishing information of different hand gestures. Experimental results confirmed that the proposed sensor could achieve excellent linearity, repeatability, and resolution. A machine learning method was utilized to recognize twelve typical precision-grasping gestures, and the results showed that the proposed sensor and machine learning method could classify the precision-grasping gestures with a recognition accuracy of 84.7%. The technology is expected to provide a promising path for gesture recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盒子盒子完成签到,获得积分10
1秒前
laii完成签到,获得积分10
2秒前
2秒前
cysteine完成签到,获得积分10
3秒前
彭于彦祖应助Abby采纳,获得10
3秒前
听安完成签到 ,获得积分10
4秒前
袁钰琳发布了新的文献求助20
5秒前
希望天下0贩的0完成签到,获得积分0
5秒前
llf发布了新的文献求助10
5秒前
6秒前
7秒前
思源应助Yunky采纳,获得10
7秒前
怕孤单的Hannah完成签到 ,获得积分10
7秒前
7秒前
科勒基侈发布了新的文献求助10
7秒前
科研通AI5应助tian采纳,获得10
8秒前
M1aMaey完成签到,获得积分10
8秒前
赵焱峥发布了新的文献求助10
8秒前
伊叶之丘完成签到 ,获得积分10
9秒前
陈鱼鱼发布了新的文献求助10
10秒前
任老三完成签到,获得积分10
10秒前
12秒前
13秒前
14秒前
Amon完成签到 ,获得积分10
15秒前
香蕉觅云应助九月采纳,获得30
16秒前
MO-LI应助一条纤维化的鱼采纳,获得10
17秒前
17秒前
wennn完成签到 ,获得积分20
17秒前
Uaena完成签到,获得积分10
18秒前
Xixi完成签到,获得积分10
19秒前
杨紫琴发布了新的文献求助10
19秒前
ohenry完成签到,获得积分10
19秒前
填海发布了新的文献求助10
19秒前
er_shi_yi发布了新的文献求助10
19秒前
无花果应助十月采纳,获得10
20秒前
阿特拉斯耸耸肩完成签到,获得积分10
21秒前
22秒前
李健应助Chrischelsea采纳,获得10
23秒前
科研通AI5应助brittany采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701220
求助须知:如何正确求助?哪些是违规求助? 3251569
关于积分的说明 9875257
捐赠科研通 2963566
什么是DOI,文献DOI怎么找? 1625169
邀请新用户注册赠送积分活动 769876
科研通“疑难数据库(出版商)”最低求助积分说明 742582