材料科学
电解
电池(电)
水溶液
电解质
电化学
储能
密度泛函理论
化学工程
电极
物理化学
化学
热力学
计算化学
工程类
功率(物理)
物理
作者
Dongliang Chao,Chao Ye,Fangxi Xie,Wanhai Zhou,Qinghua Zhang,Qinfen Gu,Kenneth Davey,Lin Gu,Shi Zhang Qiao
标识
DOI:10.1002/adma.202001894
摘要
Research interest and achievements in zinc aqueous batteries, such as alkaline Zn//Mn, Zn//Ni/Co, Zn-air batteries, and near-neutral Zn-ion and hybrid ion batteries, have surged throughout the world due to their features of low-cost and high-safety. However, practical application of Zn-based secondary batteries is plagued by restrictive energy and power densities in which an inadequate output plateau voltage and sluggish kinetics are mutually accountable. Here, a novel paradigm high-rate and high-voltage Zn-Mn hybrid aqueous battery (HAB) is constructed with an expanded electrochemical stability window over 3.4 V that is affordable. As a proof of concept, catalyzed MnO2 /Mn2+ electrolysis kinetics is demonstrated in the HAB via facile introduction of Ni2+ into the electrolyte. Various techniques are employed, including in situ synchrotron X-ray powder diffraction, ex situ X-ray absorption fine structure, and electron energy loss spectroscopy, to reveal the reversible charge-storage mechanism and the origin of the boosted rate-capability. Density functional theory (DFT) calculations reveal enhanced active electron states and charge delocalization after introducing strongly electronegative Ni. Simulations of the reaction pathways confirm the enhanced catalyzed electrolysis kinetics by the facilitated charge transfer at the active O sites around Ni dopants. These findings significantly advance aqueous batteries a step closer toward practical low-cost application.
科研通智能强力驱动
Strongly Powered by AbleSci AI