Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:11 (6): 1287-1295 被引量:48
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰妙海发布了新的文献求助10
刚刚
刚刚
琼枝完成签到,获得积分10
1秒前
1秒前
大熊猫发布了新的文献求助10
2秒前
sganthem发布了新的文献求助10
2秒前
xxddw完成签到,获得积分10
2秒前
乏味完成签到,获得积分20
3秒前
隐形曼青应助yin采纳,获得10
3秒前
眯眯眼的板栗完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
共享精神应助L~采纳,获得10
4秒前
何博发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
万能图书馆应助柳crystal采纳,获得10
5秒前
sda关注了科研通微信公众号
5秒前
Lumos发布了新的文献求助10
5秒前
陌上花开完成签到,获得积分20
6秒前
Taishan完成签到,获得积分10
7秒前
7秒前
佳佳发布了新的文献求助30
7秒前
7秒前
sganthem完成签到,获得积分10
8秒前
张张发布了新的文献求助10
8秒前
大模型应助平常的蜜粉采纳,获得10
9秒前
9秒前
小王发布了新的文献求助10
9秒前
温柔的沉鱼完成签到,获得积分10
9秒前
小益博士完成签到,获得积分10
9秒前
neal完成签到,获得积分10
9秒前
da1234发布了新的文献求助10
10秒前
xn201120应助m鹿m嘟啦采纳,获得100
10秒前
11秒前
李建行发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113