亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:11 (6): 1287-1295 被引量:54
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George完成签到,获得积分10
6秒前
努力的淼淼完成签到 ,获得积分10
8秒前
16秒前
量子星尘发布了新的文献求助10
21秒前
深情安青应助YUkiii采纳,获得10
32秒前
38秒前
lawang发布了新的文献求助10
42秒前
bono完成签到 ,获得积分10
49秒前
CC完成签到,获得积分10
49秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
mingjiang发布了新的文献求助10
1分钟前
mingjiang完成签到,获得积分10
1分钟前
kuoping完成签到,获得积分0
1分钟前
哼哼啊嗯哼啊完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
YUkiii发布了新的文献求助10
2分钟前
YUkiii完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
4分钟前
jin666发布了新的文献求助10
4分钟前
在水一方应助jin666采纳,获得10
4分钟前
meeteryu完成签到,获得积分10
4分钟前
Orange应助yao采纳,获得10
4分钟前
caspar完成签到,获得积分10
4分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
5分钟前
小高想去浙大读博完成签到 ,获得积分10
5分钟前
yao发布了新的文献求助10
5分钟前
5分钟前
yao完成签到,获得积分10
5分钟前
六六完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650979
求助须知:如何正确求助?哪些是违规求助? 4782454
关于积分的说明 15052860
捐赠科研通 4809757
什么是DOI,文献DOI怎么找? 2572566
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585