Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:11 (6): 1287-1295 被引量:54
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Linkingrains发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
冷傲汽车发布了新的文献求助10
6秒前
思源应助明芬采纳,获得10
6秒前
6秒前
fff发布了新的文献求助10
7秒前
7秒前
王鑫毅发布了新的文献求助10
8秒前
善良菠萝完成签到 ,获得积分10
8秒前
9秒前
10秒前
stark完成签到,获得积分10
11秒前
bkagyin应助轻松靖巧采纳,获得10
11秒前
12秒前
yuchuncheng发布了新的文献求助10
12秒前
LULU酱完成签到 ,获得积分10
12秒前
不倦发布了新的文献求助10
12秒前
顾矜应助何YI采纳,获得10
15秒前
淡淡的大雁完成签到,获得积分10
16秒前
JamesPei应助daijidlka采纳,获得10
16秒前
17秒前
Jasper应助左浩龙采纳,获得10
17秒前
19秒前
19秒前
拾柒完成签到,获得积分10
19秒前
健康的网络完成签到,获得积分10
19秒前
落后的小猫咪完成签到,获得积分10
20秒前
老阎应助pdds采纳,获得20
21秒前
22秒前
22秒前
22秒前
Glorious完成签到,获得积分10
23秒前
月妍关注了科研通微信公众号
23秒前
啊啊啊完成签到,获得积分10
23秒前
完美世界应助shixinran采纳,获得10
23秒前
kk给kk的求助进行了留言
23秒前
橘涂发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195286
求助须知:如何正确求助?哪些是违规求助? 4377351
关于积分的说明 13632318
捐赠科研通 4232616
什么是DOI,文献DOI怎么找? 2321792
邀请新用户注册赠送积分活动 1319885
关于科研通互助平台的介绍 1270299