亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:11 (6): 1287-1295 被引量:54
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙千凝发布了新的文献求助30
5秒前
多年以后完成签到,获得积分10
8秒前
赘婿应助孙千凝采纳,获得30
9秒前
13秒前
19秒前
2568269431完成签到 ,获得积分10
19秒前
大模型应助科研通管家采纳,获得10
20秒前
赵赵发布了新的文献求助10
22秒前
张杠杠完成签到 ,获得积分10
27秒前
mmmmmagic完成签到,获得积分10
27秒前
旺仔同学完成签到,获得积分10
28秒前
浮游应助mmmmmagic采纳,获得10
30秒前
神经病学大师完成签到,获得积分10
32秒前
Orange应助rrrrrr采纳,获得10
45秒前
Jocenly发布了新的文献求助10
47秒前
Rita应助FIN采纳,获得50
48秒前
52秒前
52秒前
dongzhiliang完成签到,获得积分20
53秒前
oweing发布了新的文献求助30
55秒前
dongzhiliang发布了新的文献求助10
57秒前
58秒前
科研通AI2S应助Jocenly采纳,获得10
1分钟前
方金龙发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xyx完成签到,获得积分10
1分钟前
xyx发布了新的文献求助10
1分钟前
Sarahminn完成签到,获得积分10
1分钟前
懒惰扼杀激情完成签到 ,获得积分10
1分钟前
英俊的铭应助dongzhiliang采纳,获得10
1分钟前
狗妹那塞完成签到,获得积分0
1分钟前
方金龙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Lin发布了新的文献求助10
1分钟前
kdc完成签到,获得积分10
1分钟前
1分钟前
Virtual发布了新的文献求助50
1分钟前
是阿丹啊发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4567464
求助须知:如何正确求助?哪些是违规求助? 3990555
关于积分的说明 12354784
捐赠科研通 3662326
什么是DOI,文献DOI怎么找? 2018092
邀请新用户注册赠送积分活动 1052648
科研通“疑难数据库(出版商)”最低求助积分说明 940121