Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:11 (6): 1287-1295 被引量:48
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melooo完成签到,获得积分10
刚刚
刚刚
ada发布了新的文献求助10
刚刚
ying完成签到,获得积分10
刚刚
爆米花应助申木采纳,获得30
刚刚
李小二完成签到,获得积分10
2秒前
JamesPei应助景行行止采纳,获得10
2秒前
YSY完成签到 ,获得积分10
2秒前
慕青应助明明采纳,获得10
3秒前
斯文败类应助CPUPPer采纳,获得30
3秒前
ywayw发布了新的文献求助10
3秒前
3秒前
小马甲应助脱壳金蝉采纳,获得30
4秒前
贝贝完成签到,获得积分10
4秒前
4秒前
馋嘴小糖发布了新的文献求助10
4秒前
5秒前
圆月弯刀完成签到 ,获得积分10
5秒前
离枝完成签到 ,获得积分10
5秒前
5秒前
领导范儿应助ying采纳,获得10
5秒前
小蘑菇应助铁铁采纳,获得10
6秒前
醉熏的灵完成签到 ,获得积分10
6秒前
阿鹤发布了新的文献求助10
6秒前
mhl11给搞怪超短裙的求助进行了留言
6秒前
7秒前
7秒前
7秒前
7秒前
Hello应助Summer夏天采纳,获得30
7秒前
skylee9527发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
fufu完成签到,获得积分10
10秒前
湖里完成签到,获得积分10
10秒前
冲冲冲!发布了新的文献求助10
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257848
求助须知:如何正确求助?哪些是违规求助? 2899735
关于积分的说明 8307278
捐赠科研通 2568985
什么是DOI,文献DOI怎么找? 1395394
科研通“疑难数据库(出版商)”最低求助积分说明 653074
邀请新用户注册赠送积分活动 630933