Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:11 (6): 1287-1295 被引量:54
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给好评发布了新的文献求助10
刚刚
1秒前
Cynicism发布了新的文献求助10
2秒前
Snow完成签到,获得积分10
2秒前
子车茗应助洛苏采纳,获得20
2秒前
栓Q发布了新的文献求助10
3秒前
3秒前
浮游应助HHHHH采纳,获得10
5秒前
5秒前
嗯呢完成签到 ,获得积分10
5秒前
铁铁完成签到,获得积分10
5秒前
6秒前
个性的智宸完成签到,获得积分10
6秒前
8秒前
充电宝应助流云采纳,获得10
8秒前
伟峰完成签到,获得积分10
9秒前
9秒前
十月_i发布了新的文献求助20
9秒前
田様应助迷路的曼凡采纳,获得10
9秒前
10秒前
10秒前
10秒前
杨秋芸发布了新的文献求助10
10秒前
pluto应助漂亮的孤丹采纳,获得10
11秒前
11秒前
所所应助大鸟依人采纳,获得10
11秒前
12秒前
Vicki发布了新的文献求助10
12秒前
远方完成签到,获得积分10
12秒前
小沈最美完成签到,获得积分10
12秒前
张一凡完成签到,获得积分10
13秒前
科研通AI6应助阿斌采纳,获得10
14秒前
维他奶发布了新的文献求助10
14秒前
14秒前
yukiytii关注了科研通微信公众号
14秒前
14秒前
15秒前
drughunter009完成签到 ,获得积分10
15秒前
yiyi131发布了新的文献求助10
15秒前
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343316
求助须知:如何正确求助?哪些是违规求助? 4478987
关于积分的说明 13941205
捐赠科研通 4375914
什么是DOI,文献DOI怎么找? 2404365
邀请新用户注册赠送积分活动 1396915
关于科研通互助平台的介绍 1369240