Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features

医学 神经外科 神经学 血管外科 心脏外科 放射科 外科 精神科
作者
Wei Zhu,Wenqiang Li,Zhongbin Tian,Yisen Zhang,Kun Wang,Ying Zhang,Jian Liu,Xinjian Yang
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:11 (6): 1287-1295 被引量:54
标识
DOI:10.1007/s12975-020-00811-2
摘要

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806–0.893), 0.858 (95 %CI 0.816–0.900), and 0.867 (95% CI 0.828–0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wu发布了新的文献求助10
1秒前
2秒前
翎儿响叮当完成签到 ,获得积分10
2秒前
科研通AI6应助jjyy采纳,获得10
2秒前
皛燚完成签到,获得积分10
2秒前
2秒前
3秒前
wudan发布了新的文献求助10
4秒前
wwww发布了新的文献求助10
4秒前
桃博发布了新的文献求助10
4秒前
5秒前
俭朴衫完成签到,获得积分10
6秒前
Miya完成签到 ,获得积分10
8秒前
善学以致用应助wuwuhu采纳,获得10
9秒前
夹心儿完成签到,获得积分10
10秒前
天马发布了新的文献求助10
10秒前
ding应助辣辣采纳,获得10
10秒前
我是老大应助阿哇采纳,获得10
10秒前
我是老大应助向语堂采纳,获得10
11秒前
秀丽灵珊完成签到,获得积分20
11秒前
苏千景发布了新的文献求助10
11秒前
小山隹完成签到,获得积分10
11秒前
可爱的函函应助离开土豆采纳,获得10
14秒前
淘宝叮咚发布了新的文献求助10
14秒前
汉堡包应助逍遥采纳,获得10
15秒前
15秒前
鳗鱼橘子完成签到,获得积分10
15秒前
zz321完成签到,获得积分10
16秒前
17秒前
17秒前
PGS发布了新的文献求助10
19秒前
19秒前
ghtsmile发布了新的文献求助10
19秒前
20秒前
冷静的柜子完成签到,获得积分10
20秒前
20秒前
wang发布了新的文献求助20
21秒前
愉快的苑博完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588804
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788829
捐赠科研通 4626418
什么是DOI,文献DOI怎么找? 2531970
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329