荧光
光致发光
材料科学
无机化学
猝灭(荧光)
分析化学(期刊)
量子产额
作者
Yiren Wang,Huan Wang,Mei Yang,Jingli Yuan,Jing Wu
标识
DOI:10.1016/j.optmat.2017.10.030
摘要
Abstract Development of visible-light-excited lanthanide (III) complex-based luminescent probes is highly appealing due to their superiority of less damage to the living biosystems over the conventional UV-light-excited ones. In this work, a visible-light-excited europium (III) complex-based luminescent probe, BPED-BHHCT-Eu3+-BPT, has been designed and synthesized by conjugating the Cu2+-binding N,N-bis(2-pyridylmethyl)ethanediamine (BPED) to a tetradentate β-diketone ligand 4,4′-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedione-6″-yl)chlorosulfo-o-terphenyl (BHHCT) and coordinating with a coligand 2-(N,N-diethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine) (BPT) for the time-gated luminescence detection of Cu2+ ions and hydrogen sulfide (H2S) in living cells. BPED-BHHCT-Eu3+-BPT exhibited a sharp excitation peak at 407 nm and a wide excitation window extending to beyond 460 nm. Upon its reaction with Cu2+ ions, the luminescence of BPED-BHHCT-Eu3+-BPT was efficiently quenched, which could be reversibly restored by the addition of H2S due to the strong affinity between Cu2+ ions and H2S. The “on-off-on” type luminescence behavior of BPED-BHHCT-Eu3+-BPT towards Cu2+ ions and H2S enabled the sensing of the two species with high sensitivity and selectivity. The performances of BPED-BHHCT-Eu3+-BPT for visualizing intracellular Cu2+ ions and H2S were investigated, and the results have demonstrated the practical applicability of the probe for molecular imaging of cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI