亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery

医学 置信区间 红细胞压积 接收机工作特性 外科 输血 回顾性队列研究 随机森林 现行程序术语 概化理论 队列 内科学 统计 机器学习 数学 计算机科学
作者
Wesley M. Durand,J. Mason DePasse,Alan H. Daniels
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (15): 1058-1066 被引量:79
标识
DOI:10.1097/brs.0000000000002515
摘要

Study Design. Retrospective cohort study. Objective. Blood transfusion is frequently necessary after adult spinal deformity (ASD) surgery. We sought to develop predictive models for blood transfusion after ASD surgery, utilizing both classification tree and random forest machine-learning approaches. Summary of Background Data. Past models for transfusion risk among spine surgery patients are disadvantaged through use of single-institutional data, potentially limiting generalizability. Methods. This investigation was conducted utilizing the American College of Surgeons National Surgical Quality Improvement Program dataset years 2012 to 2015. Patients undergoing surgery for ASD were identified using primary-listed current procedural terminology codes. In total, 1029 patients were analyzed. The primary outcome measure was intra-/postoperative blood transfusion. Patients were divided into training (n = 824) and validation (n = 205) datasets. Single classification tree and random forest models were developed. Both models were tested on the validation dataset using area under the receiver operating characteristic curve (AUC), which was compared between models. Results. Overall, 46.5% (n = 479) of patients received a transfusion intraoperatively or within 72 hours postoperatively. The final classification tree model used operative duration, hematocrit, and weight, exhibiting AUC = 0.79 (95% confidence interval 0.73–0.85) on the validation set. The most influential variables in the random forest model were operative duration, surgical invasiveness, hematocrit, weight, and age. The random forest model exhibited AUC = 0.85 (95% confidence interval 0.80–0.90). The difference between the classification tree and random forest AUCs was nonsignificant at the validation cohort size of 205 patients ( P = 0.1551). Conclusion. This investigation produced tree-based machine-learning models of blood transfusion risk after ASD surgery. The random forest model offered very good predictive capability as measured by AUC. Our single classification tree model offered superior ease of implementation, but a lower AUC as compared to the random forest approach, although this difference was not statistically significant at the size of our validation cohort. Clinicians may choose to implement either of these models to predict blood transfusion among their patients. Furthermore, policy makers may use these models on a population-based level to assess predicted transfusion rates after ASD surgery. Level of Evidence: 3

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
温水完成签到 ,获得积分10
2秒前
超级野狼发布了新的文献求助10
5秒前
crx发布了新的文献求助10
5秒前
撒旦啊实打实的完成签到,获得积分10
11秒前
可爱的函函应助Guts采纳,获得10
16秒前
科研通AI6.1应助Guts采纳,获得10
16秒前
乐乐应助材料生采纳,获得10
17秒前
CodeCraft应助crx采纳,获得10
18秒前
淡淡的秋柳完成签到 ,获得积分10
27秒前
27秒前
和光同尘完成签到,获得积分10
29秒前
柚子完成签到 ,获得积分10
30秒前
材料生发布了新的文献求助10
32秒前
36秒前
40秒前
万事胜意完成签到 ,获得积分10
42秒前
46秒前
minkeyantong完成签到 ,获得积分10
52秒前
xintai完成签到,获得积分10
55秒前
材料生完成签到,获得积分10
59秒前
丘比特应助wu采纳,获得30
59秒前
共享精神应助zhaoyali采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
姚奋斗完成签到,获得积分10
1分钟前
1分钟前
橙子完成签到,获得积分10
1分钟前
wq完成签到 ,获得积分10
1分钟前
李爱国应助超级野狼采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475