Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery

医学 置信区间 红细胞压积 接收机工作特性 外科 输血 回顾性队列研究 随机森林 现行程序术语 概化理论 队列 内科学 统计 机器学习 数学 计算机科学
作者
Wesley M. Durand,J. Mason DePasse,Alan H. Daniels
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (15): 1058-1066 被引量:79
标识
DOI:10.1097/brs.0000000000002515
摘要

Study Design. Retrospective cohort study. Objective. Blood transfusion is frequently necessary after adult spinal deformity (ASD) surgery. We sought to develop predictive models for blood transfusion after ASD surgery, utilizing both classification tree and random forest machine-learning approaches. Summary of Background Data. Past models for transfusion risk among spine surgery patients are disadvantaged through use of single-institutional data, potentially limiting generalizability. Methods. This investigation was conducted utilizing the American College of Surgeons National Surgical Quality Improvement Program dataset years 2012 to 2015. Patients undergoing surgery for ASD were identified using primary-listed current procedural terminology codes. In total, 1029 patients were analyzed. The primary outcome measure was intra-/postoperative blood transfusion. Patients were divided into training (n = 824) and validation (n = 205) datasets. Single classification tree and random forest models were developed. Both models were tested on the validation dataset using area under the receiver operating characteristic curve (AUC), which was compared between models. Results. Overall, 46.5% (n = 479) of patients received a transfusion intraoperatively or within 72 hours postoperatively. The final classification tree model used operative duration, hematocrit, and weight, exhibiting AUC = 0.79 (95% confidence interval 0.73–0.85) on the validation set. The most influential variables in the random forest model were operative duration, surgical invasiveness, hematocrit, weight, and age. The random forest model exhibited AUC = 0.85 (95% confidence interval 0.80–0.90). The difference between the classification tree and random forest AUCs was nonsignificant at the validation cohort size of 205 patients ( P = 0.1551). Conclusion. This investigation produced tree-based machine-learning models of blood transfusion risk after ASD surgery. The random forest model offered very good predictive capability as measured by AUC. Our single classification tree model offered superior ease of implementation, but a lower AUC as compared to the random forest approach, although this difference was not statistically significant at the size of our validation cohort. Clinicians may choose to implement either of these models to predict blood transfusion among their patients. Furthermore, policy makers may use these models on a population-based level to assess predicted transfusion rates after ASD surgery. Level of Evidence: 3

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助徐若楠采纳,获得10
刚刚
1秒前
2秒前
涛ss发布了新的文献求助10
2秒前
阔达岂愈完成签到,获得积分20
2秒前
xcchh完成签到,获得积分10
3秒前
fr0zen完成签到,获得积分10
3秒前
4秒前
Akim应助大面包采纳,获得10
4秒前
7秒前
7秒前
7秒前
8秒前
Lucas应助单薄虔采纳,获得10
8秒前
8秒前
9秒前
Brian发布了新的文献求助30
9秒前
粗犷的天问完成签到,获得积分20
9秒前
9秒前
析木发布了新的文献求助10
11秒前
wanglixiang发布了新的文献求助20
12秒前
可靠雅青发布了新的文献求助10
12秒前
涛ss完成签到,获得积分10
12秒前
小古发布了新的文献求助10
12秒前
Zhang发布了新的文献求助10
13秒前
zzz发布了新的文献求助30
15秒前
16秒前
yim发布了新的文献求助10
18秒前
充电宝应助hhx采纳,获得10
19秒前
20秒前
在水一方应助Zhang采纳,获得10
21秒前
所所应助内向含桃采纳,获得10
21秒前
21秒前
22秒前
可靠雅青完成签到,获得积分10
23秒前
23秒前
Serene完成签到,获得积分10
24秒前
大面包发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
111完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572037
求助须知:如何正确求助?哪些是违规求助? 4657138
关于积分的说明 14719690
捐赠科研通 4598044
什么是DOI,文献DOI怎么找? 2523550
邀请新用户注册赠送积分活动 1494303
关于科研通互助平台的介绍 1464404