Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery

医学 置信区间 红细胞压积 接收机工作特性 外科 输血 回顾性队列研究 随机森林 现行程序术语 概化理论 队列 内科学 统计 机器学习 数学 计算机科学
作者
Wesley M. Durand,J. Mason DePasse,Alan H. Daniels
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:43 (15): 1058-1066 被引量:79
标识
DOI:10.1097/brs.0000000000002515
摘要

Study Design. Retrospective cohort study. Objective. Blood transfusion is frequently necessary after adult spinal deformity (ASD) surgery. We sought to develop predictive models for blood transfusion after ASD surgery, utilizing both classification tree and random forest machine-learning approaches. Summary of Background Data. Past models for transfusion risk among spine surgery patients are disadvantaged through use of single-institutional data, potentially limiting generalizability. Methods. This investigation was conducted utilizing the American College of Surgeons National Surgical Quality Improvement Program dataset years 2012 to 2015. Patients undergoing surgery for ASD were identified using primary-listed current procedural terminology codes. In total, 1029 patients were analyzed. The primary outcome measure was intra-/postoperative blood transfusion. Patients were divided into training (n = 824) and validation (n = 205) datasets. Single classification tree and random forest models were developed. Both models were tested on the validation dataset using area under the receiver operating characteristic curve (AUC), which was compared between models. Results. Overall, 46.5% (n = 479) of patients received a transfusion intraoperatively or within 72 hours postoperatively. The final classification tree model used operative duration, hematocrit, and weight, exhibiting AUC = 0.79 (95% confidence interval 0.73–0.85) on the validation set. The most influential variables in the random forest model were operative duration, surgical invasiveness, hematocrit, weight, and age. The random forest model exhibited AUC = 0.85 (95% confidence interval 0.80–0.90). The difference between the classification tree and random forest AUCs was nonsignificant at the validation cohort size of 205 patients ( P = 0.1551). Conclusion. This investigation produced tree-based machine-learning models of blood transfusion risk after ASD surgery. The random forest model offered very good predictive capability as measured by AUC. Our single classification tree model offered superior ease of implementation, but a lower AUC as compared to the random forest approach, although this difference was not statistically significant at the size of our validation cohort. Clinicians may choose to implement either of these models to predict blood transfusion among their patients. Furthermore, policy makers may use these models on a population-based level to assess predicted transfusion rates after ASD surgery. Level of Evidence: 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
mhlxxx发布了新的文献求助10
3秒前
4秒前
周帆完成签到,获得积分10
4秒前
yar应助Jason-1024采纳,获得10
5秒前
lwkk完成签到 ,获得积分10
7秒前
予安发布了新的文献求助10
8秒前
科研顺利完成签到,获得积分10
8秒前
爆米花应助mof采纳,获得10
9秒前
yuanyuan发布了新的文献求助10
9秒前
完美世界应助称心的乘云采纳,获得10
9秒前
领导范儿应助典雅的俊驰采纳,获得10
10秒前
dkm关注了科研通微信公众号
10秒前
10秒前
南柯一梦完成签到 ,获得积分10
11秒前
西蓝花香菜完成签到 ,获得积分10
11秒前
Orange应助段绮彤采纳,获得10
12秒前
12秒前
13秒前
魏少爷发布了新的文献求助10
14秒前
14秒前
14秒前
木木发布了新的文献求助10
15秒前
淘宝叮咚发布了新的文献求助10
15秒前
Jason-1024完成签到,获得积分10
15秒前
优雅的忆霜完成签到,获得积分10
16秒前
淘宝叮咚发布了新的文献求助10
16秒前
19秒前
ywl发布了新的文献求助10
19秒前
11111完成签到,获得积分20
19秒前
roxy发布了新的文献求助10
20秒前
Rondab应助材料小白采纳,获得10
20秒前
小李发布了新的文献求助10
20秒前
李健的小迷弟应助liars采纳,获得10
21秒前
孙成成发布了新的文献求助10
22秒前
22秒前
yunyunyun发布了新的文献求助10
22秒前
ORANGE完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338