MugNet: Deep learning for hyperspectral image classification using limited samples

高光谱成像 人工智能 模式识别(心理学) 计算机科学 遥感 计算机视觉 地质学
作者
Bin Pan,Zhenwei Shi,Xia Xu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:145: 108-119 被引量:236
标识
DOI:10.1016/j.isprsjprs.2017.11.003
摘要

In recent years, deep learning based methods have attracted broad attention in the field of hyperspectral image classification. However, due to the massive parameters and the complex network structure, deep learning methods may not perform well when only few training samples are available. In this paper, we propose a small-scale data based method, multi-grained network (MugNet), to explore the application of deep learning approaches in hyperspectral image classification. MugNet could be considered as a simplified deep learning model which mainly targets at limited samples based hyperspectral image classification. Three novel strategies are proposed to construct MugNet. First, the spectral relationship among different bands, as well as the spatial correlation within neighboring pixels, are both utilized via a multi-grained scanning approach. The proposed multi-grained scanning strategy could not only extract the joint spectral-spatial information, but also combine different grains’ spectral and spatial relationship. Second, because there are abundant unlabeled pixels available in hyperspectral images, we take full advantage of these samples, and adopt a semi-supervised manner in the process of generating convolution kernels. At last, the MugNet is built upon the basis of a very simple network which does not include many hyperparameters for tuning. The performance of MugNet is evaluated on a popular and two challenging data sets, and comparison experiments with several state-of-the-art hyperspectral image classification methods are revealed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liufgui应助DueR采纳,获得10
1秒前
t1234567发布了新的文献求助10
1秒前
yxr0315发布了新的文献求助10
2秒前
Hello应助陈曦采纳,获得10
3秒前
如意枫叶发布了新的文献求助10
4秒前
慕青应助蝈蝈采纳,获得10
4秒前
5秒前
6秒前
王小西发布了新的文献求助10
7秒前
7秒前
8秒前
四木完成签到,获得积分10
8秒前
9秒前
努力完成签到,获得积分10
9秒前
小当家发布了新的文献求助10
10秒前
11秒前
帅气冰菱发布了新的文献求助10
11秒前
Dino发布了新的文献求助10
13秒前
14秒前
蝈蝈完成签到,获得积分10
14秒前
14秒前
淡定的松子完成签到,获得积分10
15秒前
帅男发布了新的文献求助10
15秒前
Owen应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
半城微凉应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
cherlie应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
安详立果发布了新的文献求助10
16秒前
充电宝应助科研通管家采纳,获得10
17秒前
wdy111应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得20
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
Hollow发布了新的文献求助10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176