MugNet: Deep learning for hyperspectral image classification using limited samples

高光谱成像 人工智能 模式识别(心理学) 计算机科学 遥感 计算机视觉 地质学
作者
Bin Pan,Zhenwei Shi,Xia Xu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:145: 108-119 被引量:236
标识
DOI:10.1016/j.isprsjprs.2017.11.003
摘要

In recent years, deep learning based methods have attracted broad attention in the field of hyperspectral image classification. However, due to the massive parameters and the complex network structure, deep learning methods may not perform well when only few training samples are available. In this paper, we propose a small-scale data based method, multi-grained network (MugNet), to explore the application of deep learning approaches in hyperspectral image classification. MugNet could be considered as a simplified deep learning model which mainly targets at limited samples based hyperspectral image classification. Three novel strategies are proposed to construct MugNet. First, the spectral relationship among different bands, as well as the spatial correlation within neighboring pixels, are both utilized via a multi-grained scanning approach. The proposed multi-grained scanning strategy could not only extract the joint spectral-spatial information, but also combine different grains’ spectral and spatial relationship. Second, because there are abundant unlabeled pixels available in hyperspectral images, we take full advantage of these samples, and adopt a semi-supervised manner in the process of generating convolution kernels. At last, the MugNet is built upon the basis of a very simple network which does not include many hyperparameters for tuning. The performance of MugNet is evaluated on a popular and two challenging data sets, and comparison experiments with several state-of-the-art hyperspectral image classification methods are revealed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
林先生完成签到,获得积分10
刚刚
2秒前
bkagyin应助龙俊利采纳,获得10
2秒前
2秒前
Qinghua发布了新的文献求助10
3秒前
gzy发布了新的文献求助10
3秒前
小马甲应助LL采纳,获得10
4秒前
li发布了新的文献求助10
4秒前
浮游应助bsssa采纳,获得10
5秒前
leinana发布了新的文献求助30
5秒前
5秒前
YE完成签到,获得积分10
6秒前
6秒前
7秒前
龙俊利完成签到,获得积分10
7秒前
桐桐应助球球采纳,获得10
8秒前
8秒前
脑洞疼应助Ting采纳,获得10
8秒前
hanhan完成签到,获得积分10
12秒前
13秒前
南桑发布了新的文献求助10
13秒前
LL发布了新的文献求助10
14秒前
15秒前
今后应助courage采纳,获得10
15秒前
隐形曼青应助叶远望采纳,获得10
16秒前
斯文败类应助Ting采纳,获得10
17秒前
17秒前
sine完成签到,获得积分10
18秒前
18秒前
19秒前
一颗咸蛋黄完成签到 ,获得积分10
19秒前
19秒前
万能图书馆应助阔达宝莹采纳,获得10
20秒前
传奇3应助冰冰采纳,获得10
21秒前
学术蝗虫发布了新的文献求助10
21秒前
sxh发布了新的文献求助10
23秒前
23秒前
852应助笑傲江湖采纳,获得20
23秒前
23秒前
24秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499624
求助须知:如何正确求助?哪些是违规求助? 4596396
关于积分的说明 14454419
捐赠科研通 4529576
什么是DOI,文献DOI怎么找? 2482089
邀请新用户注册赠送积分活动 1466061
关于科研通互助平台的介绍 1438891