MugNet: Deep learning for hyperspectral image classification using limited samples

高光谱成像 人工智能 模式识别(心理学) 计算机科学 遥感 计算机视觉 地质学
作者
Bin Pan,Zhenwei Shi,Xia Xu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:145: 108-119 被引量:236
标识
DOI:10.1016/j.isprsjprs.2017.11.003
摘要

In recent years, deep learning based methods have attracted broad attention in the field of hyperspectral image classification. However, due to the massive parameters and the complex network structure, deep learning methods may not perform well when only few training samples are available. In this paper, we propose a small-scale data based method, multi-grained network (MugNet), to explore the application of deep learning approaches in hyperspectral image classification. MugNet could be considered as a simplified deep learning model which mainly targets at limited samples based hyperspectral image classification. Three novel strategies are proposed to construct MugNet. First, the spectral relationship among different bands, as well as the spatial correlation within neighboring pixels, are both utilized via a multi-grained scanning approach. The proposed multi-grained scanning strategy could not only extract the joint spectral-spatial information, but also combine different grains’ spectral and spatial relationship. Second, because there are abundant unlabeled pixels available in hyperspectral images, we take full advantage of these samples, and adopt a semi-supervised manner in the process of generating convolution kernels. At last, the MugNet is built upon the basis of a very simple network which does not include many hyperparameters for tuning. The performance of MugNet is evaluated on a popular and two challenging data sets, and comparison experiments with several state-of-the-art hyperspectral image classification methods are revealed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助lizhi采纳,获得10
1秒前
yar应助lizhi采纳,获得10
1秒前
啦啦啦啦发布了新的文献求助30
1秒前
乐乐发布了新的文献求助10
2秒前
Leucalypt完成签到 ,获得积分10
2秒前
人间烟火发布了新的文献求助10
2秒前
3秒前
4秒前
如意曼雁完成签到,获得积分10
4秒前
共享精神应助x1nger采纳,获得10
4秒前
5秒前
ZZDXXX发布了新的文献求助10
5秒前
小杨完成签到,获得积分10
6秒前
小马甲应助DQY采纳,获得10
6秒前
hill发布了新的文献求助10
8秒前
iiiorange发布了新的文献求助20
8秒前
HTniconico发布了新的文献求助10
9秒前
诸葛不亮_1完成签到,获得积分10
9秒前
10秒前
板凳发布了新的文献求助10
10秒前
桐桐应助于胜男采纳,获得10
10秒前
乐乐完成签到,获得积分10
10秒前
昀宇发布了新的文献求助10
11秒前
情怀应助西伯侯采纳,获得10
11秒前
细腻的灵槐完成签到 ,获得积分10
12秒前
Joey发布了新的文献求助20
12秒前
gent完成签到,获得积分10
12秒前
画个圈圈恋上荣完成签到,获得积分10
14秒前
辜月十二完成签到 ,获得积分10
14秒前
Owen应助夏季霸吹采纳,获得10
14秒前
失眠鸭完成签到,获得积分10
15秒前
刘明锐完成签到,获得积分10
15秒前
16秒前
科目三应助啦啦啦啦采纳,获得10
16秒前
gent发布了新的文献求助10
16秒前
wwc应助MQRR采纳,获得10
17秒前
咩咩羊完成签到,获得积分10
17秒前
爆米花应助Fjun采纳,获得10
19秒前
诸葛不亮完成签到 ,获得积分10
20秒前
羊村第一巴图鲁完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574