pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis

化学 二聚体 蛋白质聚集 圆二色性 折叠(DSP实现) 动力学 蛋白质折叠 生物物理学 原籍国 结晶学 突变体 突变 生物化学 有机化学 电气工程 物理 工程类 基因 生物 量子力学
作者
Andrea Pica,Serena Leone,Rocco Di Girolamo,Federica Donnarumma,Alessandro Emendato,Michele F. Rega,Antonello Merlino,Delia Picone
出处
期刊:Biochimica Et Biophysica Acta - General Subjects [Elsevier]
卷期号:1862 (4): 808-815 被引量:13
标识
DOI:10.1016/j.bbagen.2017.12.012
摘要

MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小肆完成签到 ,获得积分10
刚刚
1秒前
共享精神应助Asystasia7采纳,获得10
2秒前
张豪祥完成签到,获得积分20
2秒前
Ava应助sffsv采纳,获得20
2秒前
2秒前
WNL发布了新的文献求助10
3秒前
小分队发布了新的文献求助10
3秒前
4秒前
冷阳发布了新的文献求助10
6秒前
阳佟怀绿完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
由富发布了新的文献求助10
7秒前
zhr完成签到,获得积分10
8秒前
8秒前
nice完成签到,获得积分10
9秒前
辞清完成签到 ,获得积分10
10秒前
11秒前
刘艺娜完成签到,获得积分10
11秒前
无足鸟完成签到,获得积分10
11秒前
SONG发布了新的文献求助10
11秒前
呆萌千青给呆萌千青的求助进行了留言
11秒前
善学以致用应助发发旦旦采纳,获得10
11秒前
eric888给实验室的求助进行了留言
12秒前
12秒前
111完成签到,获得积分10
12秒前
sffsv完成签到,获得积分20
13秒前
刘歌发布了新的文献求助10
14秒前
llllll发布了新的文献求助10
14秒前
14秒前
123456发布了新的文献求助10
15秒前
Huang完成签到,获得积分10
15秒前
刘太冰完成签到,获得积分10
15秒前
Owen应助专注姿采纳,获得10
15秒前
CipherSage应助友好的乘风采纳,获得30
16秒前
打打应助lily采纳,获得10
17秒前
lwj发布了新的文献求助10
17秒前
科研小白完成签到,获得积分10
17秒前
fei菲飞完成签到,获得积分10
17秒前
Joker完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758