pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis

化学 二聚体 蛋白质聚集 圆二色性 折叠(DSP实现) 动力学 蛋白质折叠 生物物理学 原籍国 结晶学 突变体 突变 生物化学 有机化学 电气工程 物理 工程类 基因 生物 量子力学
作者
Andrea Pica,Serena Leone,Rocco Di Girolamo,Federica Donnarumma,Alessandro Emendato,Michele F. Rega,Antonello Merlino,Delia Picone
出处
期刊:Biochimica Et Biophysica Acta - General Subjects [Elsevier]
卷期号:1862 (4): 808-815 被引量:13
标识
DOI:10.1016/j.bbagen.2017.12.012
摘要

MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助camellia采纳,获得10
1秒前
小二郎应助无情的白桃采纳,获得10
1秒前
1秒前
研友_Zb1rln完成签到,获得积分10
3秒前
健身boy完成签到,获得积分10
3秒前
盛京烟雨行完成签到 ,获得积分10
3秒前
3秒前
心灵美的大山完成签到,获得积分10
3秒前
3秒前
yuan发布了新的文献求助10
4秒前
诚心八宝粥完成签到,获得积分10
4秒前
5秒前
艺术家完成签到 ,获得积分10
6秒前
6秒前
6秒前
DreamMaker完成签到 ,获得积分10
6秒前
自由完成签到 ,获得积分10
6秒前
请勿继续发布了新的文献求助10
6秒前
聪明宛菡完成签到 ,获得积分10
7秒前
搜集达人应助木子采纳,获得10
8秒前
英姑应助伊丽莎白打工采纳,获得10
8秒前
9秒前
李浓发布了新的文献求助10
9秒前
长情绿凝完成签到,获得积分10
9秒前
9秒前
9秒前
FashionBoy应助科研废物采纳,获得10
10秒前
Ava应助zzznznnn采纳,获得10
10秒前
2799完成签到,获得积分10
10秒前
家家完成签到 ,获得积分10
11秒前
小牛同志完成签到,获得积分10
11秒前
11秒前
11秒前
西瓜霜完成签到 ,获得积分10
11秒前
深情安青应助aaaaa采纳,获得10
12秒前
12秒前
自由的过客完成签到,获得积分10
13秒前
转角一起走完成签到,获得积分20
13秒前
22完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759