已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A SYSTEM FOR ACCURATELY PREDICTING THE RISK OF MYOCARDIAL INFARCTION USING PCG, ECG AND CLINICAL FEATURES

医学 胸痛 心肌梗塞 判别式 心音图 心脏病学 内科学 医疗急救 计算机科学 人工智能
作者
Maryam Zarrabi,Hossein Parsaei,Reza Boostani,Ahad Zare,Zhila Dorfeshan,Khalil Zarrabi,Javad Kojuri
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:29 (03): 1750023-1750023 被引量:10
标识
DOI:10.4015/s1016237217500235
摘要

Myocardial infarction (MI) also known as heart attack is one of the prevalence cardiovascular diseases. MI that is due to the blockade in the coronary artery is caused by the lack of blood supply (ischemia) to heart tissue. Determining the risk of MI and hospitalizing the victim immediately can prolong patient’s life and enhance the quality of living through appropriate treatment. To make this decision more accurate, in this study, a decision support system is proposed to classify patients with hard chest pain (sign of MI) into high and low risk groups. Such a system can also assist in managing the limitation of bed in the care units such as cardiac care unit by deciding on admitting a subject with a hard chest pain whom refers to a hospital or not. Despite several efforts in this issue, the so far published results demonstrated that distinguishing these patients using just electrocardiogram (ECG) features is not promising. In addition, these methods did not focus on classifying the patients with high and low risks of MI. In this regard, auxiliary features from phonocardiogram (PCG) signals and clinical data were elicited to create a discriminative feature set and ultimately improve the performance of the decision making system. In this research, ECG (from 12 leads), PCG signal and clinical data were acquired from 83 patients two times (morning and evening) in the first day. Since the number of elicited features from the raw data of each patient is high, the irrelevant and non-discriminative features were eliminated by sequential forward selection. The selected features were applied to [Formula: see text]-nearest neighbor classifier resulted in 98.0% sensitivity, 100% specificity and 99.0% accuracy over the patients. The results illustrate that neither clinical data nor ECG features nor PCG features are lonely enough for estimating the risk of MI. Employing features from different modalities can improve the performance such that the developed multimodal-based system overperformed single modal-based systems. The obtained results are promising and suggest that using this system might be useful as a means for altering the risk of MI in patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Da You发布了新的文献求助10
刚刚
bkagyin应助张瑞锋采纳,获得10
1秒前
asstman发布了新的文献求助10
4秒前
zmnzmnzmn发布了新的文献求助10
5秒前
越啊完成签到,获得积分10
5秒前
可爱的函函应助方利俊采纳,获得10
6秒前
tczw667发布了新的文献求助10
6秒前
SMHILU完成签到,获得积分10
7秒前
李健应助善良的虔采纳,获得10
7秒前
Bryce完成签到,获得积分10
8秒前
星辰大海应助zgl0806采纳,获得10
9秒前
10秒前
12秒前
派大星完成签到,获得积分10
12秒前
zzzy完成签到 ,获得积分10
13秒前
14秒前
橙汁水水完成签到 ,获得积分10
14秒前
科研通AI6应助悬铃木采纳,获得10
14秒前
15秒前
15秒前
所所应助drtftyv采纳,获得10
16秒前
谦让的凝阳完成签到,获得积分10
16秒前
jy完成签到,获得积分10
17秒前
Mason发布了新的文献求助10
19秒前
20秒前
小蘑菇应助热心的送终采纳,获得10
21秒前
天123完成签到 ,获得积分10
21秒前
上官若男应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
梦红完成签到,获得积分10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
嘿嘿应助科研通管家采纳,获得10
22秒前
BowieHuang应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590005
求助须知:如何正确求助?哪些是违规求助? 4674464
关于积分的说明 14794012
捐赠科研通 4629754
什么是DOI,文献DOI怎么找? 2532486
邀请新用户注册赠送积分活动 1501175
关于科研通互助平台的介绍 1468533