A SYSTEM FOR ACCURATELY PREDICTING THE RISK OF MYOCARDIAL INFARCTION USING PCG, ECG AND CLINICAL FEATURES

医学 胸痛 心肌梗塞 判别式 心音图 心脏病学 内科学 医疗急救 计算机科学 人工智能
作者
Maryam Zarrabi,Hossein Parsaei,Reza Boostani,Ahad Zare,Zhila Dorfeshan,Khalil Zarrabi,Javad Kojuri
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [World Scientific]
卷期号:29 (03): 1750023-1750023 被引量:10
标识
DOI:10.4015/s1016237217500235
摘要

Myocardial infarction (MI) also known as heart attack is one of the prevalence cardiovascular diseases. MI that is due to the blockade in the coronary artery is caused by the lack of blood supply (ischemia) to heart tissue. Determining the risk of MI and hospitalizing the victim immediately can prolong patient’s life and enhance the quality of living through appropriate treatment. To make this decision more accurate, in this study, a decision support system is proposed to classify patients with hard chest pain (sign of MI) into high and low risk groups. Such a system can also assist in managing the limitation of bed in the care units such as cardiac care unit by deciding on admitting a subject with a hard chest pain whom refers to a hospital or not. Despite several efforts in this issue, the so far published results demonstrated that distinguishing these patients using just electrocardiogram (ECG) features is not promising. In addition, these methods did not focus on classifying the patients with high and low risks of MI. In this regard, auxiliary features from phonocardiogram (PCG) signals and clinical data were elicited to create a discriminative feature set and ultimately improve the performance of the decision making system. In this research, ECG (from 12 leads), PCG signal and clinical data were acquired from 83 patients two times (morning and evening) in the first day. Since the number of elicited features from the raw data of each patient is high, the irrelevant and non-discriminative features were eliminated by sequential forward selection. The selected features were applied to [Formula: see text]-nearest neighbor classifier resulted in 98.0% sensitivity, 100% specificity and 99.0% accuracy over the patients. The results illustrate that neither clinical data nor ECG features nor PCG features are lonely enough for estimating the risk of MI. Employing features from different modalities can improve the performance such that the developed multimodal-based system overperformed single modal-based systems. The obtained results are promising and suggest that using this system might be useful as a means for altering the risk of MI in patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林林完成签到,获得积分10
1秒前
1秒前
龙抬头发布了新的文献求助10
1秒前
王炸完成签到,获得积分10
1秒前
眼睛大忆梅完成签到,获得积分10
1秒前
1秒前
一味愚完成签到,获得积分10
1秒前
2秒前
hahaha完成签到,获得积分10
2秒前
2秒前
开心就好发布了新的文献求助10
3秒前
顺利夏之完成签到 ,获得积分10
3秒前
3秒前
ezvsnoc完成签到,获得积分10
3秒前
红豆发布了新的文献求助10
3秒前
wanci应助齐小明采纳,获得10
3秒前
3秒前
小马甲应助闪闪路人采纳,获得10
4秒前
博士吴发布了新的文献求助10
4秒前
吃好睡好发布了新的文献求助10
4秒前
Petrichor完成签到,获得积分10
5秒前
元宝完成签到,获得积分10
5秒前
ry完成签到,获得积分10
5秒前
科研通AI2S应助洁白的故人采纳,获得10
5秒前
5秒前
Danqi完成签到,获得积分10
5秒前
pakyl发布了新的文献求助10
6秒前
上官若男应助Yy采纳,获得10
6秒前
所所应助勤恳的仰采纳,获得10
6秒前
7秒前
CR7应助DIY101采纳,获得20
7秒前
7秒前
健谈的巧曼完成签到,获得积分10
8秒前
搞怪的易槐完成签到,获得积分10
8秒前
zt1812431172完成签到,获得积分10
8秒前
8秒前
rakuyo发布了新的文献求助10
9秒前
long4jun3发布了新的文献求助10
9秒前
酷波er应助负责乐安采纳,获得10
9秒前
whatever举报Ricewind求助涉嫌违规
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016913
求助须知:如何正确求助?哪些是违规求助? 3557067
关于积分的说明 11323667
捐赠科研通 3289813
什么是DOI,文献DOI怎么找? 1812563
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812136