已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A SYSTEM FOR ACCURATELY PREDICTING THE RISK OF MYOCARDIAL INFARCTION USING PCG, ECG AND CLINICAL FEATURES

医学 胸痛 心肌梗塞 判别式 心音图 心脏病学 内科学 医疗急救 计算机科学 人工智能
作者
Maryam Zarrabi,Hossein Parsaei,Reza Boostani,Ahad Zare,Zhila Dorfeshan,Khalil Zarrabi,Javad Kojuri
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:29 (03): 1750023-1750023 被引量:10
标识
DOI:10.4015/s1016237217500235
摘要

Myocardial infarction (MI) also known as heart attack is one of the prevalence cardiovascular diseases. MI that is due to the blockade in the coronary artery is caused by the lack of blood supply (ischemia) to heart tissue. Determining the risk of MI and hospitalizing the victim immediately can prolong patient’s life and enhance the quality of living through appropriate treatment. To make this decision more accurate, in this study, a decision support system is proposed to classify patients with hard chest pain (sign of MI) into high and low risk groups. Such a system can also assist in managing the limitation of bed in the care units such as cardiac care unit by deciding on admitting a subject with a hard chest pain whom refers to a hospital or not. Despite several efforts in this issue, the so far published results demonstrated that distinguishing these patients using just electrocardiogram (ECG) features is not promising. In addition, these methods did not focus on classifying the patients with high and low risks of MI. In this regard, auxiliary features from phonocardiogram (PCG) signals and clinical data were elicited to create a discriminative feature set and ultimately improve the performance of the decision making system. In this research, ECG (from 12 leads), PCG signal and clinical data were acquired from 83 patients two times (morning and evening) in the first day. Since the number of elicited features from the raw data of each patient is high, the irrelevant and non-discriminative features were eliminated by sequential forward selection. The selected features were applied to [Formula: see text]-nearest neighbor classifier resulted in 98.0% sensitivity, 100% specificity and 99.0% accuracy over the patients. The results illustrate that neither clinical data nor ECG features nor PCG features are lonely enough for estimating the risk of MI. Employing features from different modalities can improve the performance such that the developed multimodal-based system overperformed single modal-based systems. The obtained results are promising and suggest that using this system might be useful as a means for altering the risk of MI in patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jami-yu完成签到,获得积分20
2秒前
2秒前
刻苦的小土豆完成签到 ,获得积分10
6秒前
啦啦啦完成签到,获得积分10
6秒前
人间大清醒完成签到,获得积分10
13秒前
llllll完成签到 ,获得积分10
14秒前
白紫寒完成签到,获得积分10
15秒前
15秒前
陶醉妙芹发布了新的文献求助10
17秒前
笑点低的火龙果完成签到,获得积分20
18秒前
HXY发布了新的文献求助10
18秒前
所所应助记得早睡早起bbh采纳,获得20
21秒前
不想活了完成签到 ,获得积分10
22秒前
传奇3应助冲浪男孩226采纳,获得10
22秒前
23秒前
24秒前
HXY完成签到,获得积分20
27秒前
ling完成签到 ,获得积分10
27秒前
闪闪新梅完成签到,获得积分10
27秒前
鲜于元龙完成签到,获得积分10
28秒前
29秒前
小蘑菇应助HXY采纳,获得10
32秒前
内向的绿发布了新的文献求助10
34秒前
行走完成签到,获得积分10
35秒前
万能图书馆应助susan采纳,获得10
35秒前
渭阳野士完成签到,获得积分10
36秒前
莓烦恼完成签到 ,获得积分10
37秒前
Lucas应助旋转鸡爪子采纳,获得10
38秒前
123完成签到 ,获得积分10
39秒前
清清清清允完成签到,获得积分10
40秒前
抚琴祛魅完成签到 ,获得积分10
43秒前
陶醉妙芹完成签到,获得积分10
44秒前
可爱的刚完成签到,获得积分10
45秒前
49秒前
51秒前
Zack完成签到,获得积分10
53秒前
kk完成签到,获得积分10
55秒前
ccc完成签到 ,获得积分10
55秒前
susan发布了新的文献求助10
56秒前
奋斗的小笼包完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714043
求助须知:如何正确求助?哪些是违规求助? 5220045
关于积分的说明 15272610
捐赠科研通 4865609
什么是DOI,文献DOI怎么找? 2612231
邀请新用户注册赠送积分活动 1562407
关于科研通互助平台的介绍 1519591