亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A SYSTEM FOR ACCURATELY PREDICTING THE RISK OF MYOCARDIAL INFARCTION USING PCG, ECG AND CLINICAL FEATURES

医学 胸痛 心肌梗塞 判别式 心音图 心脏病学 内科学 医疗急救 计算机科学 人工智能
作者
Maryam Zarrabi,Hossein Parsaei,Reza Boostani,Ahad Zare,Zhila Dorfeshan,Khalil Zarrabi,Javad Kojuri
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:29 (03): 1750023-1750023 被引量:10
标识
DOI:10.4015/s1016237217500235
摘要

Myocardial infarction (MI) also known as heart attack is one of the prevalence cardiovascular diseases. MI that is due to the blockade in the coronary artery is caused by the lack of blood supply (ischemia) to heart tissue. Determining the risk of MI and hospitalizing the victim immediately can prolong patient’s life and enhance the quality of living through appropriate treatment. To make this decision more accurate, in this study, a decision support system is proposed to classify patients with hard chest pain (sign of MI) into high and low risk groups. Such a system can also assist in managing the limitation of bed in the care units such as cardiac care unit by deciding on admitting a subject with a hard chest pain whom refers to a hospital or not. Despite several efforts in this issue, the so far published results demonstrated that distinguishing these patients using just electrocardiogram (ECG) features is not promising. In addition, these methods did not focus on classifying the patients with high and low risks of MI. In this regard, auxiliary features from phonocardiogram (PCG) signals and clinical data were elicited to create a discriminative feature set and ultimately improve the performance of the decision making system. In this research, ECG (from 12 leads), PCG signal and clinical data were acquired from 83 patients two times (morning and evening) in the first day. Since the number of elicited features from the raw data of each patient is high, the irrelevant and non-discriminative features were eliminated by sequential forward selection. The selected features were applied to [Formula: see text]-nearest neighbor classifier resulted in 98.0% sensitivity, 100% specificity and 99.0% accuracy over the patients. The results illustrate that neither clinical data nor ECG features nor PCG features are lonely enough for estimating the risk of MI. Employing features from different modalities can improve the performance such that the developed multimodal-based system overperformed single modal-based systems. The obtained results are promising and suggest that using this system might be useful as a means for altering the risk of MI in patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊大头发布了新的文献求助10
4秒前
8秒前
JamesPei应助熊大头采纳,获得10
14秒前
17秒前
lixuebin完成签到 ,获得积分10
17秒前
21秒前
22秒前
33秒前
汉堡包应助七安采纳,获得10
33秒前
茶叶派发布了新的文献求助20
45秒前
1分钟前
1分钟前
清水烫春菜完成签到,获得积分10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
fuyaoye2010完成签到,获得积分10
1分钟前
fuyaoye2010发布了新的文献求助10
1分钟前
wanci应助茶叶派采纳,获得10
1分钟前
1分钟前
lhr发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
anna完成签到 ,获得积分10
1分钟前
2分钟前
迅速初柳发布了新的文献求助10
2分钟前
2分钟前
Lyhz发布了新的文献求助10
2分钟前
充电宝应助迅速初柳采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
哈哈哈哈发布了新的文献求助10
2分钟前
LYL完成签到,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746703
求助须知:如何正确求助?哪些是违规求助? 5438025
关于积分的说明 15355789
捐赠科研通 4886737
什么是DOI,文献DOI怎么找? 2627400
邀请新用户注册赠送积分活动 1575879
关于科研通互助平台的介绍 1532607