A SYSTEM FOR ACCURATELY PREDICTING THE RISK OF MYOCARDIAL INFARCTION USING PCG, ECG AND CLINICAL FEATURES

医学 胸痛 心肌梗塞 判别式 心音图 心脏病学 内科学 医疗急救 计算机科学 人工智能
作者
Maryam Zarrabi,Hossein Parsaei,Reza Boostani,Ahad Zare,Zhila Dorfeshan,Khalil Zarrabi,Javad Kojuri
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [World Scientific]
卷期号:29 (03): 1750023-1750023 被引量:10
标识
DOI:10.4015/s1016237217500235
摘要

Myocardial infarction (MI) also known as heart attack is one of the prevalence cardiovascular diseases. MI that is due to the blockade in the coronary artery is caused by the lack of blood supply (ischemia) to heart tissue. Determining the risk of MI and hospitalizing the victim immediately can prolong patient’s life and enhance the quality of living through appropriate treatment. To make this decision more accurate, in this study, a decision support system is proposed to classify patients with hard chest pain (sign of MI) into high and low risk groups. Such a system can also assist in managing the limitation of bed in the care units such as cardiac care unit by deciding on admitting a subject with a hard chest pain whom refers to a hospital or not. Despite several efforts in this issue, the so far published results demonstrated that distinguishing these patients using just electrocardiogram (ECG) features is not promising. In addition, these methods did not focus on classifying the patients with high and low risks of MI. In this regard, auxiliary features from phonocardiogram (PCG) signals and clinical data were elicited to create a discriminative feature set and ultimately improve the performance of the decision making system. In this research, ECG (from 12 leads), PCG signal and clinical data were acquired from 83 patients two times (morning and evening) in the first day. Since the number of elicited features from the raw data of each patient is high, the irrelevant and non-discriminative features were eliminated by sequential forward selection. The selected features were applied to [Formula: see text]-nearest neighbor classifier resulted in 98.0% sensitivity, 100% specificity and 99.0% accuracy over the patients. The results illustrate that neither clinical data nor ECG features nor PCG features are lonely enough for estimating the risk of MI. Employing features from different modalities can improve the performance such that the developed multimodal-based system overperformed single modal-based systems. The obtained results are promising and suggest that using this system might be useful as a means for altering the risk of MI in patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
maguodrgon发布了新的文献求助10
1秒前
2秒前
HK发布了新的文献求助10
3秒前
打打应助读心理学导致的采纳,获得10
4秒前
weiv发布了新的文献求助10
5秒前
Owen应助Chao采纳,获得10
5秒前
5秒前
镓氧锌钇铀应助nlf999采纳,获得10
5秒前
7秒前
可乐完成签到 ,获得积分10
7秒前
立婉陶完成签到,获得积分10
8秒前
Tender完成签到,获得积分10
9秒前
啦啦发布了新的文献求助10
10秒前
会飞的鱼发布了新的文献求助150
10秒前
AA完成签到 ,获得积分10
10秒前
华仔应助芋泥啵啵采纳,获得10
10秒前
lcx发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得30
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
Ava应助刚睡醒采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
sardine应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299901
求助须知:如何正确求助?哪些是违规求助? 4447967
关于积分的说明 13844251
捐赠科研通 4333585
什么是DOI,文献DOI怎么找? 2378948
邀请新用户注册赠送积分活动 1374119
关于科研通互助平台的介绍 1339733