钻石
石墨
成核
地质学
菱镁矿
硅酸盐
矿物学
橄榄岩
沉积岩
材料科学
地球化学
地幔(地质学)
化学工程
冶金
化学
有机化学
镁
工程类
作者
А. В. Гирнис,Gerhard P. Brey,Vasily V. Bulatov,Heidi E. Höfer,Alan B. Woodland
出处
期刊:Lithos
[Elsevier]
日期:2018-06-01
卷期号:310-311: 302-313
被引量:8
标识
DOI:10.1016/j.lithos.2018.04.010
摘要
Diamond nucleation and growth were investigated experimentally at 7.5 and 10.5 GPa and temperatures up to 1500 °C. Samples consisted of two layers: i) H2O- and CO2-bearing model sediment and ii) graphite-bearing garnet harzburgite comprising natural minerals. Two experimental series were conducted, one under a controlled temperature gradient with the sedimentary layer usually in the cold zone and the other under isothermal conditions. In the latter case, diamond seeds were added to the sedimentary mixture. During the experiments, the sedimentary layer partially or completely melted, with the melt percolating and interacting with the adjacent harzburgite. The graphite-to-diamond transition in the peridotite was observed above 1300 °C at 7.5 GPa and 1200 °C at 10.5 GPa in the temperature-gradient experiments, and at temperatures ~100 °C lower in the isothermal experiments with diamond seeds. Newly formed diamond occurs mostly as individual grains up to 10 μm in size and is separate from graphite aggregates. In some cases, an association of diamond with magnesite was observed. Diamond nucleation occurs in hydrous and CO2-bearing silicate melt following graphite dissolution and recrystallization. In the case of the diamond–magnesite association, diamond was probably formed through carbonate reduction coupled with graphite oxidation. The composition of the melts ranged from “carbonatitic” with ~10 wt% SiO2 and >50 wt% volatiles to hydrous silicate with ~40 wt% SiO2 and <10 wt% volatiles. This variation has no strong effect on diamond nucleation or growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI