脂筏
高尔基体
细胞生物学
化学
上皮极性
癌细胞
癌胚抗原
生物
生物化学
细胞
癌症
信号转导
遗传学
作者
Nina Kokkonen,Elham Khosrowabadi,Antti Hassinen,Déborah Harrus,Tuomo Glumoff,Thomas Kietzmann,Sakari Kellokumpu
标识
DOI:10.1089/ars.2017.7389
摘要
Aims: Carcinoembryonic antigen (CEACAM5, CEA) is a known tumor marker for colorectal cancer that localizes in a polarized manner to the apical surface in normal colon epithelial cells whereas in cancer cells it is present at both the apical and basolateral surfaces of the cells. Since the Golgi apparatus sorts and transports most proteins to these cell surface domains, we set out here to investigate whether any of the factors commonly associated with tumorigenesis, including hypoxia, generation of reactive oxygen species (ROS), altered redox homeostasis, or an altered Golgi pH, are responsible for mistargeting of CEA to the basolateral surface in cancer cells. Results: Using polarized nontumorigenic Madin-Darby canine kidney (MDCK) cells and CaCo-2 colorectal cancer cells as targets, we show that apical delivery of CEA is not affected by hypoxia, ROS, nor changes in the Golgi redox state. Instead, we find that an elevated Golgi pH induces basolateral targeting of CEA and increases its TX-100 solubility, indicating impaired association of CEA with lipid rafts. Moreover, disruption of lipid rafts by methyl-β-cyclodextrin induced accumulation of the CEA protein at the basolateral surface in MDCK cells. Experiments with the glycosylphosphatidylinositol (GPI)-anchorless CEA mutant and CEA-specific GPI-anchored enhanced green fluorescent protein (EGFP-GPI) fusion protein revealed that the GPI-anchor was critical for the pH-dependent apical delivery of the CEA in MDCK cells. Innovation and Conclusion: The findings indicate that an abnormal Golgi pH homeostasis in cancer cells is an important factor that causes mistargeting of CEA to the basolateral surface of cancer cells via inhibiting its GPI-anchor-mediated association with lipid rafts.
科研通智能强力驱动
Strongly Powered by AbleSci AI