多硫化物
电解质
阳极
锂(药物)
材料科学
锂硫电池
无机化学
化学工程
电极
化学
医学
工程类
内分泌学
物理化学
作者
Liang Zhang,Min Ling,Jun Feng,Liqiang Mai,Gao Liu,Jinghua Guo
标识
DOI:10.1016/j.ensm.2017.09.001
摘要
LiNO3 has been widely used as an effective electrolyte additive in lithium-sulfur (Li-S) batteries to suppress the polysulfide shuttle effect. To better understand the mechanism of suppressed shuttle effect by LiNO3, herein we report a comprehensive investigation of the influence of LiNO3 additive on the formation process of the solid electrolyte interphase (SEI) layer on lithium anode of Li-S batteries by operando X-ray absorption spectroscopy (XAS). We observed that a compact and stable SEI layer composed of Li2SO3 and Li2SO4 on top of lithium anode is formed during the initial discharge process due to the synergetic effect of shuttled polysulfides and LiNO3, which can effectively suppress the subsequent reaction between polysulfides in electrolyte and lithium metal and thus result in the alleviation of polysulfide shuttle effect. In contrast, when using electrolyte without LiNO3, the shuttled polysulfides continuously react with lithium metal to form insulating Li2S on lithium anode, leading to the irreversible capacity loss. Our present operando XAS study provides a valuable insight into the important role of LiNO3 for the protection of lithium anodes, which will be beneficial for the further development of new electrolyte additives for high-performance Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI