Orotidine 5′-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis

化学 脱羧 立体化学 构象变化 催化作用 基质(水族馆) 活动站点 配体(生物化学) 结合位点 酶催化 过渡状态 生物化学 海洋学 受体 地质学
作者
John P. Richard,Tina L. Amyes,Archie C. Reyes
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (4): 960-969 被引量:34
标识
DOI:10.1021/acs.accounts.8b00059
摘要

ConspectusThe mystery associated with catalysis by what were once regarded as protein black boxes, diminished with the X-ray crystallographic determination of the three-dimensional structures of enzyme–substrate complexes. The report that several high-resolution X-ray crystal structures of orotidine 5′-monophosphate decarboxylase (OMPDC) failed to provide a consensus mechanism for enzyme-catalyzed decarboxylation of OMP to form uridine 5′-monophosphate, therefore, provoked a flurry of controversy. This controversy was fueled by the enormous 1023-fold rate acceleration for this enzyme, which had "jolted many biochemists' assumptions about the catalytic potential of enzymes." Our studies on the mechanism of action of OMPDC provide strong evidence that catalysis by this enzyme is not fundamentally different from less proficient catalysts, while highlighting important architectural elements that enable a peak level of performance. Many enzymes undergo substrate-induced protein conformational changes that trap their substrates in solvent occluded protein cages, but the conformational change induced by ligand binding to OMPDC is incredibly complex, as required to enable the development of 22 kcal/mol of stabilizing binding interactions with the phosphodianion and ribosyl substrate fragments of OMP. The binding energy from these fragments is utilized to activate OMPDC for catalysis of decarboxylation at the orotate fragment of OMP, through the creation of a tight, catalytically active, protein cage from the floppy, open, unliganded form of OMPDC. Such utilization of binding energy for ligand-driven conformational changes provides a general mechanism to obtain specificity in transition state binding. The rate enhancement that results from the binding of carbon acid substrates to enzymes is partly due to a reduction in the carbon acid pKa that is associated with ligand binding. The binding of UMP to OMPDC results in an unusually large >12 unit decrease in the pKa = 29 for abstraction of the C-6 substrate hydrogen, due to stabilization of an enzyme-bound vinyl carbanion, which is also an intermediate of OMPDC-catalyzed decarboxylation. The protein–ligand interactions operate to stabilize the vinyl carbanion at the enzyme active site compared to aqueous solution, rather than to stabilize the transition state for the concerted electrophilic displacement of CO2 by H+ that avoids formation of this reaction intermediate. There is evidence that OMPDC induces strain into the bound substrate. The interaction between the amide side chain of Gln-215 from the phosphodianion gripper loop and the hydroxymethylene side chain of Ser-154 from the pyrimidine umbrella of ScOMPDC position the amide side chain to interact with the phosphodianion of OMP. There are no direct stabilizing interactions between dianion gripper protein side chains Gln-215, Tyr-217, and Arg-235 and the pyrimidine ring at the decarboxylation transition state. Rather these side chains function solely to hold OMPDC in the catalytically active closed conformation. The hydrophobic side chains that line the active site of OMPDC in the region of the departing CO2 product may function to stabilize the decarboxylation transition state by providing hydrophobic solvation of this product.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyyy完成签到 ,获得积分10
1秒前
FashionBoy应助黎黎原上草采纳,获得10
2秒前
如水完成签到,获得积分20
3秒前
3秒前
天河水完成签到,获得积分20
3秒前
金不换发布了新的文献求助10
6秒前
大力鑫发布了新的文献求助10
7秒前
8秒前
蝴蝶飞过紫色海完成签到 ,获得积分10
8秒前
葡萄成熟发布了新的文献求助10
9秒前
李哈哈发布了新的文献求助10
10秒前
研友_ZGAeoL完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助kaiqiang采纳,获得10
12秒前
喝酸奶不舔盖完成签到 ,获得积分10
12秒前
Rain应助kaiqiang采纳,获得10
12秒前
okghy完成签到 ,获得积分10
12秒前
You完成签到,获得积分10
13秒前
13秒前
来了来了完成签到,获得积分10
14秒前
小李叭叭发布了新的文献求助10
14秒前
lbh完成签到,获得积分10
16秒前
ljm发布了新的文献求助10
17秒前
18秒前
科研小子完成签到 ,获得积分10
19秒前
葡萄成熟完成签到,获得积分10
20秒前
浮舟梦呓发布了新的文献求助10
21秒前
ljl86400完成签到,获得积分10
22秒前
22秒前
24秒前
科研科研发布了新的文献求助10
24秒前
水心完成签到,获得积分10
25秒前
跳跃祥发布了新的文献求助10
27秒前
PPFF发布了新的文献求助10
28秒前
熊猫侠发布了新的文献求助10
28秒前
huihui完成签到 ,获得积分10
29秒前
29秒前
29秒前
水心发布了新的文献求助20
30秒前
1111发布了新的文献求助10
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342105
求助须知:如何正确求助?哪些是违规求助? 2969338
关于积分的说明 8638723
捐赠科研通 2649065
什么是DOI,文献DOI怎么找? 1450575
科研通“疑难数据库(出版商)”最低求助积分说明 671938
邀请新用户注册赠送积分活动 661090