计算机科学
任务(项目管理)
加权
特征(语言学)
编码(集合论)
人工智能
多任务学习
人工神经网络
功能(生物学)
建筑
多样性(控制论)
网络体系结构
端到端原则
图像(数学)
机器学习
工程类
集合(抽象数据类型)
艺术
计算机安全
语言学
系统工程
程序设计语言
医学
视觉艺术
哲学
放射科
生物
进化生物学
作者
Shikun Liu,Edward Johns,Andrew J. Davison
出处
期刊:Cornell University - arXiv
日期:2018-03-28
被引量:11
标识
DOI:10.48550/arxiv.1803.10704
摘要
We propose a novel multi-task learning architecture, which allows learning of task-specific feature-level attention. Our design, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with a soft-attention module for each task. These modules allow for learning of task-specific features from the global features, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be trained end-to-end and can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. We evaluate our approach on a variety of datasets, across both image-to-image predictions and image classification tasks. We show that our architecture is state-of-the-art in multi-task learning compared to existing methods, and is also less sensitive to various weighting schemes in the multi-task loss function. Code is available at https://github.com/lorenmt/mtan.
科研通智能强力驱动
Strongly Powered by AbleSci AI