Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

计算机科学 卷积神经网络 人工智能 深度学习 编码 机器学习 原始数据 噪音(视频) 特征(语言学) 特征提取 人工神经网络 代表(政治) 数据挖掘 模式识别(心理学) 生物化学 化学 语言学 哲学 政治 政治学 法学 图像(数学) 基因 程序设计语言
作者
Rui Zhao,Ruqiang Yan,Jinjiang Wang,Kezhi Mao
出处
期刊:Sensors [MDPI AG]
卷期号:17 (2): 273-273 被引量:624
标识
DOI:10.3390/s17020273
摘要

In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
www完成签到,获得积分10
3秒前
lili发布了新的文献求助10
3秒前
4秒前
在水一方应助swx采纳,获得10
4秒前
may完成签到 ,获得积分10
5秒前
5秒前
6秒前
积极香菜发布了新的文献求助10
6秒前
猪哥哥完成签到,获得积分10
7秒前
Rigel发布了新的文献求助10
7秒前
asnly发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
大猫不吃鱼完成签到,获得积分10
10秒前
小威发布了新的文献求助10
10秒前
浮云发布了新的文献求助10
10秒前
whh123发布了新的文献求助10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
唐古拉完成签到,获得积分10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
robert3324应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542