Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

计算机科学 卷积神经网络 人工智能 深度学习 编码 机器学习 原始数据 噪音(视频) 特征(语言学) 特征提取 人工神经网络 代表(政治) 数据挖掘 模式识别(心理学) 生物化学 化学 语言学 哲学 政治 政治学 法学 图像(数学) 基因 程序设计语言
作者
Rui Zhao,Ruqiang Yan,Jinjiang Wang,Kezhi Mao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:17 (2): 273-273 被引量:664
标识
DOI:10.3390/s17020273
摘要

In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zyj发布了新的文献求助10
1秒前
月亮完成签到,获得积分10
1秒前
2秒前
天真思雁发布了新的文献求助10
2秒前
NexusExplorer应助优秀的枕头采纳,获得10
2秒前
3秒前
3秒前
Song完成签到,获得积分10
3秒前
不晚完成签到,获得积分0
4秒前
4秒前
5秒前
Lucas应助shiyu采纳,获得10
5秒前
彭于晏应助白樱恋曲采纳,获得10
6秒前
深情安青应助zzz采纳,获得10
6秒前
7秒前
8秒前
8秒前
欢乐马完成签到,获得积分10
9秒前
baby发布了新的文献求助10
9秒前
青岛发布了新的文献求助10
10秒前
健壮的怜烟应助开朗月饼采纳,获得20
11秒前
萧水白应助小陈爱科研采纳,获得10
11秒前
柯一一应助明ming到此一游采纳,获得10
11秒前
斯文败类应助中午吃什么采纳,获得10
12秒前
12秒前
泡沫完成签到,获得积分10
12秒前
斌bin完成签到,获得积分10
12秒前
13秒前
marongzhi发布了新的文献求助10
14秒前
传奇3应助yutou采纳,获得10
14秒前
16秒前
17秒前
贾舒涵发布了新的文献求助10
17秒前
青岛完成签到,获得积分20
17秒前
SYLH应助Zack采纳,获得10
17秒前
18秒前
繁荣的行天完成签到,获得积分10
18秒前
大模型应助碧蓝丹烟采纳,获得10
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502568
关于积分的说明 11108738
捐赠科研通 3233292
什么是DOI,文献DOI怎么找? 1787239
邀请新用户注册赠送积分活动 870565
科研通“疑难数据库(出版商)”最低求助积分说明 802122