非参数统计
独立性(概率论)
维数(图论)
多元统计
样本量测定
样品(材料)
参数统计
统计
k-最近邻算法
条件独立性
计算机科学
数学
统计假设检验
数据挖掘
人工智能
组合数学
化学
色谱法
作者
Soham Sarkar,Anil K. Ghosh
出处
期刊:Technometrics
[Informa]
日期:2017-01-09
卷期号:60 (1): 101-111
被引量:14
标识
DOI:10.1080/00401706.2016.1278182
摘要
Several parametric and nonparametric tests of independence between two random vectors are available in the literature. But, many of them perform poorly for high-dimensional data and are not applicable when the dimension exceeds the sample size. In this article, we propose some tests based on ranks of nearest neighbors, which can be conveniently used in high dimension, low sample size situations. Several simulated and real datasets are analyzed to show the utility of the proposed tests. Codes for implementation of the proposed tests are available as supplementary materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI