Immune Priming of the Tumor Microenvironment by Radiation

肿瘤微环境 免疫系统 免疫原性 间质细胞 癌症免疫疗法 癌症研究 免疫检查点 生物 癌细胞 免疫学 癌症 免疫疗法 医学 内科学
作者
Wen Jiang,Charles K. F. Chan,Irving L. Weissman,Betty Y.S. Kim,Stephen M. Hahn
出处
期刊:Trends in cancer [Elsevier]
卷期号:2 (11): 638-645 被引量:141
标识
DOI:10.1016/j.trecan.2016.09.007
摘要

Although cancer immunotherapies such as immune checkpoint inhibitors have provided significant clinical benefits for some patients with advanced-stage disease, response rates remain low. Finding new treatment modalities that can synergize with immune checkpoint inhibitors to enhance antitumor immune responses without increasing systemic toxicity is an active area of research. Although most cancer immunotherapy research has focused on T cells and adaptive immunity, interest is growing in exploring the role of the innate immune response in promoting antitumor effects. Given radiation's effect on cancer cells, stromal cells, and the tumor microenvironment, radiation may be a powerful tool to modulate local immunological properties of the tumor and to promote systemic antitumor responses in combination with immunotherapeutic agents. Ionizing irradiation can induce a multitude of alterations within the tumor microenvironment. Unlike targeted therapies, radiation delivered to the tumor bed can prompt phenotypic changes in both normal stromal and cancer cells, leading to molecular and physiological alterations within the tumor microenvironment. These environmental modulations directly influence the degree of immunogenicity of the tumor microenvironment and may ultimately affect tumor responsiveness to cancer immunotherapies. Here we review the preclinical evidence for tumor microenvironment-mediated immune suppression and how radiation can modulate immune properties within a tumor. We then discuss the therapeutic opportunities for combining radiation with molecular agents to enhance tumor immunogenicity and how this represents a potential exciting strategy to complement immunotherapies including immune checkpoint blockers in cancer treatment. Ionizing irradiation can induce a multitude of alterations within the tumor microenvironment. Unlike targeted therapies, radiation delivered to the tumor bed can prompt phenotypic changes in both normal stromal and cancer cells, leading to molecular and physiological alterations within the tumor microenvironment. These environmental modulations directly influence the degree of immunogenicity of the tumor microenvironment and may ultimately affect tumor responsiveness to cancer immunotherapies. Here we review the preclinical evidence for tumor microenvironment-mediated immune suppression and how radiation can modulate immune properties within a tumor. We then discuss the therapeutic opportunities for combining radiation with molecular agents to enhance tumor immunogenicity and how this represents a potential exciting strategy to complement immunotherapies including immune checkpoint blockers in cancer treatment. short sequences of peptides produced from digested proteins that are presented on the cell surface by MHCs. a calcium-binding chaperone with key functions in the immune response including facilitating the folding of MHC class I molecules and their assembly factor tapasin, promotion of cellular phagocytic uptake, and activation of ICD. also known as integrin-associated protein (IAP); is a transmembrane protein that is overexpressed by several human cancers to inhibit clearance by phagocytes. a specific form of cell apoptosis capable of activating an adaptive immune response; can be induced by cytotoxic agents as well as radiotherapy or photodynamic therapy. the pressure exerted by the free interstitial fluid, which helps to determine transcapillary flow. IFP is often elevated in tumors. a set of cell-surface proteins that helps the immune system to recognize foreign pathogens in higher vertebrates. In humans the complex is also called the human leukocyte antigen (HLA) system. a heterogeneous cell population of myeloid lineage with the capacity to suppress both innate and adaptive immune responses mediated by NK, CD4+, and CD8+ T cells. new peptide synthesized from acquired mutations within the cancer genome that are recognized by body's immune system. membrane receptor found on T lymphocytes that recognizes MHC–antigen complex. a regulated cell-death process that promotes immune tolerance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助王冠军采纳,获得10
刚刚
派大橘完成签到,获得积分10
刚刚
大宝发布了新的文献求助10
1秒前
无限的板栗完成签到 ,获得积分10
1秒前
justin完成签到,获得积分10
1秒前
隐形曼青应助111采纳,获得10
2秒前
3秒前
1073980795发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
维克托发布了新的文献求助10
7秒前
王kk完成签到 ,获得积分10
7秒前
情怀应助易烊千玺老婆采纳,获得10
8秒前
YF完成签到,获得积分10
8秒前
8秒前
paomo发布了新的文献求助10
9秒前
饭fan关注了科研通微信公众号
10秒前
ATOM完成签到,获得积分10
10秒前
靓丽白梦完成签到,获得积分10
10秒前
10秒前
11秒前
小蘑菇应助许可991127采纳,获得10
12秒前
CCC完成签到,获得积分10
12秒前
12秒前
善学以致用应助tomato采纳,获得10
12秒前
13秒前
ding应助shuyingRen采纳,获得10
13秒前
深情安青应助shuyingRen采纳,获得10
13秒前
14秒前
大宝完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
坚定剑成发布了新的文献求助10
17秒前
tiger发布了新的文献求助10
17秒前
纪言七许完成签到 ,获得积分10
17秒前
takumi发布了新的文献求助10
17秒前
18秒前
zzh发布了新的文献求助10
19秒前
小蘑菇应助酶什么幺蛾子采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666691
求助须知:如何正确求助?哪些是违规求助? 4882812
关于积分的说明 15117878
捐赠科研通 4825664
什么是DOI,文献DOI怎么找? 2583534
邀请新用户注册赠送积分活动 1537723
关于科研通互助平台的介绍 1495910