Projecting the future burden of cancer: Bayesian age–period–cohort analysis with integrated nested Laplace approximations

贝叶斯概率 马尔科夫蒙特卡洛 计算机科学 统计 计量经济学 马尔可夫链 数学
作者
Andrea Riebler,Leonhard Held
出处
期刊:Biometrical Journal [Wiley]
卷期号:59 (3): 531-549 被引量:406
标识
DOI:10.1002/bimj.201500263
摘要

The projection of age‐stratified cancer incidence and mortality rates is of great interest due to demographic changes, but also therapeutical and diagnostic developments. Bayesian age–period–cohort (APC) models are well suited for the analysis of such data, but are not yet used in routine practice of epidemiologists. Reasons may include that Bayesian APC models have been criticized to produce too wide prediction intervals. Furthermore, the fitting of Bayesian APC models is usually done using Markov chain Monte Carlo (MCMC), which introduces complex convergence concerns and may be subject to additional technical problems. In this paper we address both concerns, developing efficient MCMC‐free software for routine use in epidemiological applications. We apply Bayesian APC models to annual lung cancer data for females in five different countries, previously analyzed in the literature. To assess the predictive quality, we omit the observations from the last 10 years and compare the projections with the actual observed data based on the absolute error and the continuous ranked probability score. Further, we assess calibration of the one‐step‐ahead predictive distributions. In our application, the probabilistic forecasts obtained by the Bayesian APC model are well calibrated and not too wide. A comparison to projections obtained by a generalized Lee–Carter model is also given. The methodology is implemented in the user‐friendly R‐package BAPC using integrated nested Laplace approximations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
沢雨完成签到 ,获得积分10
2秒前
jimi发布了新的文献求助30
3秒前
浮游应助xzh采纳,获得10
5秒前
FashionBoy应助新鲜的护发素采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
8秒前
SONGYEZI应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得50
8秒前
浮游应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Momomo应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
王秋婷发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
大龙哥886应助个性的冰旋采纳,获得10
10秒前
卓哥发布了新的文献求助10
10秒前
11秒前
11秒前
诸孱完成签到,获得积分20
13秒前
13秒前
13秒前
股价发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
jasou初一发布了新的文献求助10
17秒前
可爱的函函应助股价采纳,获得10
20秒前
21秒前
蓬荜生辉完成签到,获得积分10
22秒前
浮游应助难过的醉香采纳,获得10
23秒前
金阿林在科研应助王秋婷采纳,获得10
24秒前
躺平的洋仔完成签到,获得积分10
26秒前
27秒前
大眼的平松完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495075
求助须知:如何正确求助?哪些是违规求助? 4592818
关于积分的说明 14438859
捐赠科研通 4525641
什么是DOI,文献DOI怎么找? 2479542
邀请新用户注册赠送积分活动 1464393
关于科研通互助平台的介绍 1437290