Projecting the future burden of cancer: Bayesian age–period–cohort analysis with integrated nested Laplace approximations

贝叶斯概率 马尔科夫蒙特卡洛 计算机科学 统计 计量经济学 马尔可夫链 数学
作者
Andrea Riebler,Leonhard Held
出处
期刊:Biometrical Journal [Wiley]
卷期号:59 (3): 531-549 被引量:233
标识
DOI:10.1002/bimj.201500263
摘要

The projection of age‐stratified cancer incidence and mortality rates is of great interest due to demographic changes, but also therapeutical and diagnostic developments. Bayesian age–period–cohort (APC) models are well suited for the analysis of such data, but are not yet used in routine practice of epidemiologists. Reasons may include that Bayesian APC models have been criticized to produce too wide prediction intervals. Furthermore, the fitting of Bayesian APC models is usually done using Markov chain Monte Carlo (MCMC), which introduces complex convergence concerns and may be subject to additional technical problems. In this paper we address both concerns, developing efficient MCMC‐free software for routine use in epidemiological applications. We apply Bayesian APC models to annual lung cancer data for females in five different countries, previously analyzed in the literature. To assess the predictive quality, we omit the observations from the last 10 years and compare the projections with the actual observed data based on the absolute error and the continuous ranked probability score. Further, we assess calibration of the one‐step‐ahead predictive distributions. In our application, the probabilistic forecasts obtained by the Bayesian APC model are well calibrated and not too wide. A comparison to projections obtained by a generalized Lee–Carter model is also given. The methodology is implemented in the user‐friendly R‐package BAPC using integrated nested Laplace approximations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhegewa完成签到,获得积分10
2秒前
2秒前
谨慎的尔白完成签到,获得积分10
2秒前
务实涔完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
zhegewa发布了新的文献求助10
5秒前
7秒前
7秒前
轩轩完成签到,获得积分10
8秒前
夏侯绮山发布了新的文献求助10
8秒前
务实涔发布了新的文献求助10
8秒前
好好学习完成签到,获得积分10
9秒前
独特冰安发布了新的文献求助10
9秒前
handan发布了新的文献求助10
10秒前
whysoserious完成签到,获得积分10
10秒前
nihao完成签到,获得积分10
11秒前
程雯慧完成签到,获得积分10
11秒前
11秒前
沉尘发布了新的文献求助10
12秒前
行为艺术家发布了新的文献求助200
12秒前
花生什么树完成签到,获得积分10
13秒前
酷炫依凝完成签到,获得积分10
14秒前
15秒前
XY发布了新的文献求助10
15秒前
16秒前
CodeCraft应助我爱学习采纳,获得10
16秒前
斯文败类应助内丹翠采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
汏流萤完成签到,获得积分10
18秒前
英俊的铭应助哼哼唧唧采纳,获得10
18秒前
猪猪hero应助wjx采纳,获得10
18秒前
丰富的绮波完成签到 ,获得积分10
18秒前
王赞应助wjx采纳,获得10
18秒前
19秒前
20秒前
Shelton发布了新的文献求助10
21秒前
科研通AI2S应助石慧敏采纳,获得10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519718
关于积分的说明 11199471
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798075
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305