Projecting the future burden of cancer: Bayesian age–period–cohort analysis with integrated nested Laplace approximations

贝叶斯概率 马尔科夫蒙特卡洛 计算机科学 统计 计量经济学 马尔可夫链 数学
作者
Andrea Riebler,Leonhard Held
出处
期刊:Biometrical Journal [Wiley]
卷期号:59 (3): 531-549 被引量:216
标识
DOI:10.1002/bimj.201500263
摘要

The projection of age‐stratified cancer incidence and mortality rates is of great interest due to demographic changes, but also therapeutical and diagnostic developments. Bayesian age–period–cohort (APC) models are well suited for the analysis of such data, but are not yet used in routine practice of epidemiologists. Reasons may include that Bayesian APC models have been criticized to produce too wide prediction intervals. Furthermore, the fitting of Bayesian APC models is usually done using Markov chain Monte Carlo (MCMC), which introduces complex convergence concerns and may be subject to additional technical problems. In this paper we address both concerns, developing efficient MCMC‐free software for routine use in epidemiological applications. We apply Bayesian APC models to annual lung cancer data for females in five different countries, previously analyzed in the literature. To assess the predictive quality, we omit the observations from the last 10 years and compare the projections with the actual observed data based on the absolute error and the continuous ranked probability score. Further, we assess calibration of the one‐step‐ahead predictive distributions. In our application, the probabilistic forecasts obtained by the Bayesian APC model are well calibrated and not too wide. A comparison to projections obtained by a generalized Lee–Carter model is also given. The methodology is implemented in the user‐friendly R‐package BAPC using integrated nested Laplace approximations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxin完成签到,获得积分10
刚刚
刚刚
刚刚
悦耳的冰枫完成签到 ,获得积分10
刚刚
现代的又柔完成签到,获得积分10
刚刚
羽毛发布了新的文献求助10
刚刚
samtol完成签到,获得积分10
1秒前
1秒前
Amber应助keran采纳,获得10
1秒前
xiongjian完成签到,获得积分10
1秒前
2秒前
2秒前
Orange应助喻辰星采纳,获得10
2秒前
leave发布了新的文献求助20
2秒前
2秒前
我是老大应助诗谙采纳,获得10
3秒前
欢欢发布了新的文献求助10
3秒前
十万大山兵大大完成签到,获得积分20
3秒前
科研通AI5应助科研欣路采纳,获得30
3秒前
kydd发布了新的文献求助10
5秒前
Papillon完成签到,获得积分10
5秒前
平淡的文龙完成签到,获得积分10
5秒前
盛夏完成签到,获得积分10
5秒前
贤惠的正豪完成签到,获得积分20
6秒前
7秒前
沛沛完成签到,获得积分10
8秒前
四月完成签到,获得积分10
8秒前
9秒前
常青完成签到,获得积分10
9秒前
WxChen发布了新的文献求助10
9秒前
guoguo完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
10秒前
今后应助.....采纳,获得10
10秒前
12秒前
快帮我找找完成签到,获得积分10
12秒前
12秒前
Wendy完成签到,获得积分10
12秒前
无花果应助XXF采纳,获得10
13秒前
juanjuan完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740